# NOT RUN {
data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
pop.totals<-c(`(Intercept)`=6194, stypeH=755, stypeM=1018)
## For a single factor variable this is equivalent to
## postStratify
(dclus1g<-calibrate(dclus1, ~stype, pop.totals))
svymean(~api00, dclus1g)
svytotal(~enroll, dclus1g)
svytotal(~stype, dclus1g)
## Make weights constant within school district
(dclus1agg<-calibrate(dclus1, ~stype, pop.totals, aggregate=1))
svymean(~api00, dclus1agg)
svytotal(~enroll, dclus1agg)
svytotal(~stype, dclus1agg)
## Now add sch.wide
(dclus1g2 <- calibrate(dclus1, ~stype+sch.wide, c(pop.totals, sch.wideYes=5122)))
svymean(~api00, dclus1g2)
svytotal(~enroll, dclus1g2)
svytotal(~stype, dclus1g2)
## Finally, calibrate on 1999 API and school type
(dclus1g3 <- calibrate(dclus1, ~stype+api99, c(pop.totals, api99=3914069)))
svymean(~api00, dclus1g3)
svytotal(~enroll, dclus1g3)
svytotal(~stype, dclus1g3)
## Same syntax with replicate weights
rclus1<-as.svrepdesign(dclus1)
(rclus1g3 <- calibrate(rclus1, ~stype+api99, c(pop.totals, api99=3914069)))
svymean(~api00, rclus1g3)
svytotal(~enroll, rclus1g3)
svytotal(~stype, rclus1g3)
(rclus1agg3 <- calibrate(rclus1, ~stype+api99, c(pop.totals,api99=3914069), aggregate.index=~dnum))
svymean(~api00, rclus1agg3)
svytotal(~enroll, rclus1agg3)
svytotal(~stype, rclus1agg3)
###
## Bounded weights
range(weights(dclus1g3)/weights(dclus1))
dclus1g3b <- calibrate(dclus1, ~stype+api99, c(pop.totals, api99=3914069),bounds=c(0.6,1.6))
range(weights(dclus1g3b)/weights(dclus1))
svymean(~api00, dclus1g3b)
svytotal(~enroll, dclus1g3b)
svytotal(~stype, dclus1g3b)
## Individual boundary constraints as constant values
# the first weight will be bounded at 40, the rest free to move
bnds <- list(
lower = rep(-Inf, nrow(apiclus1)),
upper = c(40, rep(Inf, nrow(apiclus1)-1)))
head(weights(dclus1g3))
dclus1g3b1 <- calibrate(dclus1, ~stype+api99, c(pop.totals, api99=3914069),
bounds=bnds, bounds.const=TRUE)
head(weights(dclus1g3b1))
svytotal(~api.stu, dclus1g3b1)
## trimming
dclus1tr <- calibrate(dclus1, ~stype+api99, c(pop.totals, api99=3914069),
bounds=c(0.5,2), trim=c(2/3,3/2))
svymean(~api00+api99+enroll, dclus1tr)
svytotal(~stype,dclus1tr)
range(weights(dclus1tr)/weights(dclus1))
rclus1tr <- calibrate(rclus1, ~stype+api99, c(pop.totals, api99=3914069),
bounds=c(0.5,2), trim=c(2/3,3/2))
svymean(~api00+api99+enroll, rclus1tr)
svytotal(~stype,rclus1tr)
## Input in the same format as rake() for classical raking
pop.table <- xtabs(~stype+sch.wide,apipop)
pop.table2 <- xtabs(~stype+comp.imp,apipop)
dclus1r<-rake(dclus1, list(~stype+sch.wide, ~stype+comp.imp),
list(pop.table, pop.table2))
gclus1r<-calibrate(dclus1, formula=list(~stype+sch.wide, ~stype+comp.imp),
population=list(pop.table, pop.table2),calfun="raking")
svymean(~api00+stype, dclus1r)
svymean(~api00+stype, gclus1r)
## generalised raking
dclus1g3c <- calibrate(dclus1, ~stype+api99, c(pop.totals,
api99=3914069), calfun="raking")
range(weights(dclus1g3c)/weights(dclus1))
(dclus1g3d <- calibrate(dclus1, ~stype+api99, c(pop.totals,
api99=3914069), calfun=cal.logit, bounds=c(0.5,2.5)))
range(weights(dclus1g3d)/weights(dclus1))
## Ratio estimators are calibration estimators
dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
svytotal(~api.stu,dstrat)
common<-svyratio(~api.stu, ~enroll, dstrat, separate=FALSE)
predict(common, total=3811472)
pop<-3811472
## equivalent to (common) ratio estimator
dstratg1<-calibrate(dstrat,~enroll-1, pop, variance=1)
svytotal(~api.stu, dstratg1)
# Alternatively specifying the heteroskedasticity parameters directly
dstratgh <- calibrate(dstrat,~enroll-1, pop, variance=apistrat$enroll)
svytotal(~api.stu, dstratgh)
# }
Run the code above in your browser using DataLab