data(nuclearplants)
### Caliper of .2 pooled SDs in the propensity score
ppty <- glm(pr~.-(pr+cost), family=binomial(), data=nuclearplants)
(pptycaliper <- caliper(ppty, width = .2))
identical(pptycaliper, # If not writing 'width=',
caliper(.2,ppty)) # give your width first.
### Caliper on a pre-formed distance
ppty.dist <- mdist(ppty)
identical(caliper(ppty.dist, width = .2), pptycaliper)
### caliper of 1.5 on the _squared_ Mahalanobis distance
caliper(width = 1.5, pr ~ t1 + t2,
data = subset(nuclearplants, subset=(pt==1)))
### caliper of 1.5 on the Mahalanobis distance
caliper(width = 1.5^2, pr ~ t1 + t2,
data = subset(nuclearplants, subset=(pt==1)))
### caliper of .6 on date, in its original units (here, years):
caliper(width=.6^2, pr ~ date, inverse.cov=diag(1),
data = subset(nuclearplants, subset=(pt==1)))
### caliper of .6 on date, in pooled sd's of date:
caliper(width=.6^2, pr ~ date,
data = subset(nuclearplants, subset=(pt==1)))
### Mahalanobis distance matching with a caliper
### of 1 pooled SD in the propensity score:
( mhd.pptyc <- caliper(ppty, width = 1) +
mdist(pr ~ t1 + t2, data = nuclearplants) )
pairmatch(mhd.pptyc)
### Excluding observations from caliper requirements:
caliper(width = 3, pr ~ t1 + t2, data = nuclearplants, exclude = c("A", "f"))
Run the code above in your browser using DataLab