Last chance! 50% off unlimited learning
Sale ends in
Compute the canonical correlations between two data matrices.
cancor(x, y, xcenter = TRUE, ycenter = TRUE)
numeric matrix (
numeric matrix (
logical or numeric vector of length TRUE
(default), subtract the column means.
If FALSE
, do not adjust the columns. Otherwise, a vector
of values to be subtracted from the columns.
analogous to xcenter
, but for the y values.
A list containing the following components:
correlations.
estimated coefficients for the x
variables.
estimated coefficients for the y
variables.
the values used to adjust the x
variables.
the values used to adjust the x
variables.
The canonical correlation analysis seeks linear combinations of the
y
variables which are well explained by linear combinations
of the x
variables. The relationship is symmetric as
‘well explained’ is measured by correlations.
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). The New S Language. Wadsworth & Brooks/Cole.
Hotelling H. (1936). Relations between two sets of variables. Biometrika, 28, 321--327. 10.1093/biomet/28.3-4.321.
Seber, G. A. F. (1984). Multivariate Observations. New York: Wiley. Page506f.
# NOT RUN {
## signs of results are random
pop <- LifeCycleSavings[, 2:3]
oec <- LifeCycleSavings[, -(2:3)]
cancor(pop, oec)
x <- matrix(rnorm(150), 50, 3)
y <- matrix(rnorm(250), 50, 5)
(cxy <- cancor(x, y))
all(abs(cor(x %*% cxy$xcoef,
y %*% cxy$ycoef)[,1:3] - diag(cxy $ cor)) < 1e-15)
all(abs(cor(x %*% cxy$xcoef) - diag(3)) < 1e-15)
all(abs(cor(y %*% cxy$ycoef) - diag(5)) < 1e-15)
# }
Run the code above in your browser using DataLab