Learn R Programming

Canopy (version 1.3.0)

canopy.sample.nocna: MCMC sampling in tree space

Description

To sample the posterior trees without CNA input. Major function of Canopy.

Usage

canopy.sample.nocna(R, X, K, numchain, max.simrun, min.simrun, writeskip, 
                  projectname, cell.line=NULL, plot.likelihood=NULL)

Arguments

R

alternative allele read depth matrix

X

total read depth matrix

K

number of subclones (vector)

numchain

number of MCMC chains with random initiations

max.simrun

maximum number of simutation iterations for each chain

min.simrun

minimum number of simutation iterations for each chain

writeskip

interval to store sampled trees

projectname

name of project

cell.line

default to be FALSE, TRUE if input sample is cell line (no normal cell contamination)

plot.likelihood

default to be TRUE, posterior likelihood plot generated for check of convergence and selection of burnin and thinning in canopy.post

Value

List of sampleed trees in subtree space with different number of subclones; plot of posterior likelihoods in each subtree space generated (pdf format).

Examples

Run this code
# NOT RUN {
    data(toy3)
    R = toy3$R; X = toy3$X
    K = 3:5
    numchain = 10
    projectname = 'toy3'
    # sampchain = canopy.sample.nocna(R = R, X = X, K = K, numchain = numchain, 
    #             max.simrun = 50000, min.simrun = 10000, writeskip = 200, 
    #             projectname = projectname,
    #             cell.line = TRUE, plot.likelihood = TRUE)
# }

Run the code above in your browser using DataLab