p = seq(0.01, 0.99, by=0.01)
cauchit(p)
max(abs(cauchit(cauchit(p), inverse = TRUE) - p)) # Should be 0
p = c(seq(-0.02, 0.02, by=0.01), seq(0.97, 1.02, by=0.01))
cauchit(p) # Has no NAs
par(mfrow = c(2, 2), lwd = (mylwd <- 2))
y = seq(-4, 4, length = 100)
p = seq(0.01, 0.99, by = 0.01)
for(d in 0:1) {
matplot(p, cbind(logit(p, deriv = d), probit(p, deriv = d)),
type = "n", col = "purple", ylab = "transformation",
las=1, main = if (d == 0) "Some probability link functions"
else "First derivative")
lines(p, logit(p, deriv = d), col = "limegreen")
lines(p, probit(p, deriv = d), col = "purple")
lines(p, cloglog(p, deriv = d), col = "chocolate")
lines(p, cauchit(p, deriv = d), col = "tan")
if (d == 0) {
abline(v = 0.5, h = 0, lty = "dashed")
legend(0, 4.5, c("logit", "probit", "cloglog", "cauchit"), lwd = mylwd,
col = c("limegreen","purple","chocolate", "tan"))
} else
abline(v = 0.5, lty = "dashed")
}
for(d in 0) {
matplot(y, cbind( logit(y, deriv = d, inverse = TRUE),
probit(y, deriv = d, inverse = TRUE)),
type = "n", col = "purple", xlab = "transformation", ylab = "p",
main = if (d == 0) "Some inverse probability link functions"
else "First derivative", las=1)
lines(y, logit(y, deriv = d, inverse = TRUE), col = "limegreen")
lines(y, probit(y, deriv = d, inverse = TRUE), col = "purple")
lines(y, cloglog(y, deriv = d, inverse = TRUE), col = "chocolate")
lines(y, cauchit(y, deriv = d, inverse = TRUE), col = "tan")
if (d == 0) {
abline(h = 0.5, v = 0, lty = "dashed")
legend(-4, 1, c("logit", "probit", "cloglog", "cauchit"), lwd = mylwd,
col = c("limegreen","purple","chocolate", "tan"))
}
}
par(lwd = 1)
Run the code above in your browser using DataLab