# (1) Plot various distributions fitted to serving size data
#
data(groundbeef)
serving <- groundbeef$serving
fitW <- fitdist(serving,"weibull")
fitln <- fitdist(serving,"lnorm")
fitg <- fitdist(serving,"gamma")
cdfcomp(list(fitW,fitln,fitg),horizontals = FALSE)
cdfcomp(list(fitW,fitln,fitg),horizontals = TRUE)
cdfcomp(list(fitW,fitln,fitg),horizontals = TRUE, verticals=TRUE,datacol="orange")
cdfcomp(list(fitW,fitln,fitg),legendtext=c("Weibull","lognormal","gamma"),
main="ground beef fits",xlab="serving sizes (g)",
ylab="F",xlim = c(0,250))
cdfcomp(list(fitW,fitln,fitg),legendtext=c("Weibull","lognormal","gamma"),
main="ground beef fits",xlab="serving sizes (g)",
ylab="F",xlim = c(0,250),xlegend = "topleft")
# (2) Plot in of lognormal distributions fitted by
# maximum goodness-of-fit estimation
# using various distances (data plotted in log scale)
#
data(endosulfan)
ATV <-subset(endosulfan,group == "NonArthroInvert")$ATV
flnMGEKS <- fitdist(ATV,"lnorm",method="mge",gof="KS")
flnMGEAD <- fitdist(ATV,"lnorm",method="mge",gof="AD")
flnMGEADL <- fitdist(ATV,"lnorm",method="mge",gof="ADL")
flnMGEAD2L <- fitdist(ATV,"lnorm",method="mge",gof="AD2L")
cdfcomp(list(flnMGEKS,flnMGEAD,flnMGEADL,flnMGEAD2L),
xlogscale=TRUE,main="fits of a lognormal dist. using various GOF dist.",
legendtext=c("MGE KS","MGE AD","MGE ADL","MGE AD2L"))
cdfcomp(list(flnMGEKS,flnMGEAD,flnMGEADL,flnMGEAD2L),
xlogscale=TRUE,verticals=TRUE,xlim=c(10,100000))
Run the code above in your browser using DataLab