pargev
. The
cumulative distribution function of the distribution is$$F(x) = e^{-e^{-y}} \mbox{,}$$
$$y = -\kappa^{-1} \log\left(1 - \frac{\kappa(x-\xi)}{\alpha}\right) \mbox{ for } \kappa \ne 0 \mbox{, and}$$
$$y = (x-\xi)/\alpha \mbox{ for } \kappa = 0 \mbox{,}$$ where $F(x)$ is the nonexceedance probability for quantile $x$, $\xi$ is a location parameter, $\alpha$ is a scale parameter, and $\kappa$ is a shape parameter.
cdfgev(x, para)
pargev
or similar.Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
quagev
, pargev
lmr <- lmom.ub(c(123,34,4,654,37,78))
cdfgev(50,pargev(lmr))
Run the code above in your browser using DataLab