# NOT RUN {
# Example 1
ystar <- venice[["r1"]] # Use the first order statistic as the response
nn <- length(ystar)
L <- runif(nn, 100, 104) # Lower censoring points
U <- runif(nn, 130, 135) # Upper censoring points
y <- pmax(L, ystar) # Left censored
y <- pmin(U, y) # Right censored
extra <- list(leftcensored = ystar < L, rightcensored = ystar > U)
fit <- vglm(y ~ scale(year), data = venice, trace = TRUE, extra = extra,
fam = cens.gumbel(mean = FALSE, perc = c(5, 25, 50, 75, 95)))
coef(fit, matrix = TRUE)
head(fitted(fit))
fit@extra
# Example 2: simulated data
nn <- 1000
ystar <- rgumbel(nn, loc = 1, scale = exp(0.5)) # The uncensored data
L <- runif(nn, -1, 1) # Lower censoring points
U <- runif(nn, 2, 5) # Upper censoring points
y <- pmax(L, ystar) # Left censored
y <- pmin(U, y) # Right censored
# }
# NOT RUN {
par(mfrow = c(1, 2)); hist(ystar); hist(y);
# }
# NOT RUN {
extra <- list(leftcensored = ystar < L, rightcensored = ystar > U)
fit <- vglm(y ~ 1, trace = TRUE, extra = extra, fam = cens.gumbel)
coef(fit, matrix = TRUE)
# }
Run the code above in your browser using DataLab