# NOT RUN {
set.seed(123)
# Model 1: censored glasso estimator (Augugliaro \emph{and other}, 2020a)
# Y ~ N(0, Sigma) and probability of left/right censored values equal to 0.05
n <- 1000L
p <- 3L
rho <- 0.3
Sigma <- outer(1L:p, 1L:p, function(i, j) rho^abs(i - j))
Z <- rcggm(n = n, Sigma = Sigma, probl = 0.05, probr = 0.05)
out <- cglasso(Z)
out
# Model 2: conditional censored glasso estimator (Augugliaro \emph{and other}, 2020b)
# Y ~ N(b0 + XB, Sigma) and probability of left/right censored values equal to 0.05
n <- 1000L
p <- 3L
q <- 2L
b0 <- runif(p)
B <- matrix(runif(q * p), nrow = q, ncol = p)
X <- matrix(rnorm(n * q), nrow = n, ncol = q)
rho <- 0.3
Sigma <- outer(1L:p, 1L:p, function(i, j) rho^abs(i - j))
Z <- rcggm(n = n, b0 = b0, X = X, B = B, Sigma = Sigma, probl = 0.05, probr = 0.05)
out <- cglasso(Z)
out
# Model 3: missglasso estimator (Stadler \emph{and other}, 2012)
# Y ~ N(b0 + XB, Sigma) and probability of missing-at-random values equal to 0.05
n <- 1000L
p <- 3L
q <- 2L
b0 <- runif(p)
B <- matrix(runif(q * p), nrow = q, ncol = p)
X <- matrix(rnorm(n * q), nrow = n, ncol = q)
rho <- 0.3
Sigma <- outer(1L:p, 1L:p, function(i, j) rho^abs(i - j))
Z <- rcggm(n = n, b0 = b0, X = X, B = B, Sigma = Sigma, probna = 0.05)
out <- cglasso(Z)
out
# Model 4: mixed estimator
# Y ~ N(b0 + XB, Sigma) and
# 1. probability of left/right censored values equal to 0.05
# 2. probability of missing-at-random values equal to 0.05
n <- 1000L
p <- 3L
q <- 2L
b0 <- runif(p)
B <- matrix(runif(q * p), nrow = q, ncol = p)
X <- matrix(rnorm(n * q), nrow = n, ncol = q)
rho <- 0.3
Sigma <- outer(1L:p, 1L:p, function(i, j) rho^abs(i - j))
Z <- rcggm(n = n, X = X, b0 = b0, B = B, Sigma = Sigma, probl = 0.05, probr = 0.05,
probna = 0.05)
out <- cglasso(Z)
out
# }
Run the code above in your browser using DataLab