Learn R Programming

gamair (version 1.0-2)

ch4: Code for Chapter 4: Introducing GAMs

Description

R code from Chapter 4 of the second edition of `Generalized Additive Models: An Introduction with R' is in the examples section below.

Arguments

References

Wood, S.N. (2017) Generalized Additive Models: An Introduction with R, CRC

See Also

mgcv, ch4.solutions

Examples

Run this code
# NOT RUN {
library(gamair); library(mgcv)

## 4.2.1
data(engine); attach(engine)

plot(size,wear,xlab="Engine capacity",ylab="Wear index")

tf <- function(x,xj,j) {
## generate jth tent function from set defined by knots xj
  dj <- xj*0;dj[j] <- 1
  approx(xj,dj,x)$y
}

tf.X <- function(x,xj) {
## tent function basis matrix given data x
## and knot sequence xj
  nk <- length(xj); n <- length(x)
  X <- matrix(NA,n,nk)
  for (j in 1:nk) X[,j] <- tf(x,xj,j)
  X
}

sj <- seq(min(size),max(size),length=6) ## generate knots
X <- tf.X(size,sj)                      ## get model matrix
b <- lm(wear~X-1)                       ## fit model
s <- seq(min(size),max(size),length=200)## prediction data
Xp <- tf.X(s,sj)                        ## prediction matrix
plot(size,wear)                         ## plot data 
lines(s,Xp%*%coef(b))                   ## overlay estimated f

## 4.2.2
prs.fit <- function(y,x,xj,sp) {
  X <- tf.X(x,xj)       ## model matrix
  D <- diff(diag(length(xj)),differences=2) ## sqrt penalty
  X <- rbind(X,sqrt(sp)*D) ## augmented model matrix
  y <- c(y,rep(0,nrow(D))) ## augmented data
  lm(y~X-1)   ## penalized least squares fit
}

sj <- seq(min(size),max(size),length=20) ## knots
b <- prs.fit(wear,size,sj,2) ## penalized fit
plot(size,wear)   ## plot data
Xp <- tf.X(s,sj)  ## prediction matrix
lines(s,Xp%*%coef(b)) ## plot the smooth 

## 4.2.3
rho = seq(-9,11,length=90)
n <- length(wear)
V <- rep(NA,90) 
for (i in 1:90) { ## loop through smoothing params
  b <- prs.fit(wear,size,sj,exp(rho[i])) ## fit model
  trF <- sum(influence(b)$hat[1:n])      ## extract EDF
  rss <- sum((wear-fitted(b)[1:n])^2)    ## residual SS
  V[i] <- n*rss/(n-trF)^2                ## GCV score
}

plot(rho,V,type="l",xlab=expression(log(lambda)),
                    main="GCV score")
sp <- exp(rho[V==min(V)])     ## extract optimal sp
b <- prs.fit(wear,size,sj,sp) ## re-fit
plot(size,wear,main="GCV optimal fit")
lines(s,Xp%*%coef(b))

## 4.2.3 mixed model connection

## copy of llm from 2.2.4...
llm <- function(theta,X,Z,y) {
  ## untransform parameters...
  sigma.b <- exp(theta[1])
  sigma <- exp(theta[2])
  ## extract dimensions...
  n <- length(y); pr <- ncol(Z); pf <- ncol(X)
  ## obtain \hat \beta, \hat b...
  X1 <- cbind(X,Z)
  ipsi <- c(rep(0,pf),rep(1/sigma.b^2,pr))
  b1 <- solve(crossprod(X1)/sigma^2+diag(ipsi),
              t(X1)%*%y/sigma^2)
  ## compute log|Z'Z/sigma^2 + I/sigma.b^2|...
  ldet <- sum(log(diag(chol(crossprod(Z)/sigma^2 + 
              diag(ipsi[-(1:pf)])))))
  ## compute log profile likelihood...
  l <- (-sum((y-X1%*%b1)^2)/sigma^2 - sum(b1^2*ipsi) - 
  n*log(sigma^2) - pr*log(sigma.b^2) - 2*ldet - n*log(2*pi))/2
  attr(l,"b") <- as.numeric(b1) ## return \hat beta and \hat b
  -l 
}

X0 <- tf.X(size,sj)            ## X in original parameterization
D <- rbind(0,0,diff(diag(20),difference=2)) 
diag(D) <- 1                   ## augmented D
X <- t(backsolve(t(D),t(X0)))  ## re-parameterized X
Z <- X[,-c(1,2)]; X <- X[,1:2] ## mixed model matrices
## estimate smoothing and variance parameters...
m <- optim(c(0,0),llm,method="BFGS",X=X,Z=Z,y=wear)
b <- attr(llm(m$par,X,Z,wear),"b") ## extract coefficients
## plot results...
plot(size,wear)
Xp1 <- t(backsolve(t(D),t(Xp))) ## re-parameterized pred. mat.
lines(s,Xp1%*%as.numeric(b),col="grey",lwd=2)

library(nlme)
g <- factor(rep(1,nrow(X)))        ## dummy factor
m <- lme(wear~X-1,random=list(g=pdIdent(~Z-1)))
lines(s,Xp1%*%as.numeric(coef(m))) ## and to plot


## 4.3.1 Additive

tf.XD <- function(x,xk,cmx=NULL,m=2) {
## get X and D subject to constraint
  nk <- length(xk)
  X <- tf.X(x,xk)[,-nk]                   ## basis matrix
  D <- diff(diag(nk),differences=m)[,-nk] ## root penalty
  if (is.null(cmx)) cmx <- colMeans(X)
  X <- sweep(X,2,cmx)        ## subtract cmx from columns
  list(X=X,D=D,cmx=cmx)
} ## tf.XD

am.fit <- function(y,x,v,sp,k=10) {
  ## setup bases and penalties...
  xk <- seq(min(x),max(x),length=k)
  xdx <- tf.XD(x,xk)
  vk <- seq(min(v),max(v),length=k)
  xdv <- tf.XD(v,vk)
  ## create augmented model matrix and response...
  nD <- nrow(xdx$D)*2
  sp <- sqrt(sp)
  X <- cbind(c(rep(1,nrow(xdx$X)),rep(0,nD)),
             rbind(xdx$X,sp[1]*xdx$D,xdv$D*0),
             rbind(xdv$X,xdx$D*0,sp[2]*xdv$D))  
  y1 <- c(y,rep(0,nD))
  ## fit model..
  b <- lm(y1~X-1)
  ## compute some useful quantities...
  n <- length(y)
  trA <- sum(influence(b)$hat[1:n]) ## EDF
  rsd <- y-fitted(b)[1:n] ## residuals
  rss <- sum(rsd^2)       ## residual SS
  sig.hat <- rss/(n-trA)       ## residual variance
  gcv <- sig.hat*n/(n-trA)     ## GCV score
  Vb <- vcov(b)*sig.hat/summary(b)$sigma^2 ## coeff cov matrix
  ## return fitted model...
  list(b=coef(b),Vb=Vb,edf=trA,gcv=gcv,fitted=fitted(b)[1:n],
       rsd=rsd,xk=list(xk,vk),cmx=list(xdx$cmx,xdv$cmx))
} ## am.fit

am.gcv <- function(lsp,y,x,v,k) {
## function suitable for GCV optimization by optim 
  am.fit(y,x,v,exp(lsp),k)$gcv
}

## find GCV optimal smoothing parameters... 
fit <- optim(c(0,0), am.gcv, y=trees$Volume, x=trees$Girth,
             v=trees$Height,k=10)
sp <- exp(fit$par) ## best fit smoothing parameters
## Get fit at GCV optimal smoothing parameters...
fit <- am.fit(trees$Volume,trees$Girth,trees$Height,sp,k=10)

am.plot <- function(fit,xlab,ylab) {
## produces effect plots for simple 2 term 
## additive model 
  start <- 2 ## where smooth coeffs start in beta
  for (i in 1:2) {
    ## sequence of values at which to predict...
    x <- seq(min(fit$xk[[i]]),max(fit$xk[[i]]),length=200)
    ## get prediction matrix for this smooth...
    Xp <- tf.XD(x,fit$xk[[i]],fit$cmx[[i]])$X 
    ## extract coefficients and cov matrix for this smooth
    stop <- start + ncol(Xp)-1; ind <- start:stop
    b <- fit$b[ind];Vb <- fit$Vb[ind,ind]
    ## values for smooth at x...
    fv <- Xp%*%b
    ## standard errors of smooth at x....
    se <- rowSums((Xp%*%Vb)*Xp)^.5
    ## 2 s.e. limits for smooth...
    ul <- fv + 2*se;ll <- fv - 2 * se
    ## plot smooth and limits...
    plot(x,fv,type="l",ylim=range(c(ul,ll)),xlab=xlab[i],
         ylab=ylab[i])
    lines(x,ul,lty=2);lines(x,ll,lty=2)
    start <- stop + 1
  }
} ## am.plot

par(mfrow=c(1,3))
plot(fit$fitted,trees$Vol,xlab="fitted volume ",
     ylab="observed volume")
am.plot(fit,xlab=c("Girth","Height"),
        ylab=c("s(Girth)","s(Height)"))

## 4.4 Generalized additive

gam.fit <- function(y,x,v,sp,k=10) {
## gamma error log link 2 term gam fit...
  eta <- log(y) ## get initial eta
  not.converged <- TRUE
  old.gcv <- -100 ## don't converge immediately
  while (not.converged) {
    mu <- exp(eta)  ## current mu estimate  
    z <- (y - mu)/mu + eta ## pseudodata
    fit <- am.fit(z,x,v,sp,k) ## penalized least squares
    if (abs(fit$gcv-old.gcv)<1e-5*fit$gcv) { 
      not.converged <- FALSE
    }
    old.gcv <- fit$gcv 
    eta <- fit$fitted ## updated eta
  }
  fit$fitted <- exp(fit$fitted) ## mu
  fit
} ## gam.fit

gam.gcv <- function(lsp,y,x,v,k=10) {
  gam.fit(y,x,v,exp(lsp),k=k)$gcv
}

fit <- optim(c(0,0),gam.gcv,y=trees$Volume,x=trees$Girth,
             v=trees$Height,k=10)
sp <- exp(fit$par)
fit <- gam.fit(trees$Volume,trees$Girth,trees$Height,sp)
par(mfrow=c(1,3))
plot(fit$fitted,trees$Vol,xlab="fitted volume ",
     ylab="observed volume")
am.plot(fit,xlab=c("Girth","Height"),
        ylab=c("s(Girth)","s(Height)"))

## 4.6 mgcv

library(mgcv)   ## load the package
library(gamair) ## load the data package
data(trees)
ct1 <- gam(Volume~s(Height)+s(Girth),
           family=Gamma(link=log),data=trees)
ct1
plot(ct1,residuals=TRUE)

## 4.6.1
ct2 <- gam(Volume~s(Height,bs="cr")+s(Girth,bs="cr"),
           family=Gamma(link=log),data=trees)
ct2
ct3 <- gam(Volume ~ s(Height) + s(Girth,bs="cr",k=20),
           family=Gamma(link=log),data=trees)
ct3

ct4 <- gam(Volume ~ s(Height) + s(Girth),
           family=Gamma(link=log),data=trees,gamma=1.4)
ct4
plot(ct4,residuals=TRUE)

## 4.6.2

ct5 <- gam(Volume ~ s(Height,Girth,k=25),
           family=Gamma(link=log),data=trees)
ct5
plot(ct5,too.far=0.15)
ct6 <- gam(Volume ~ te(Height,Girth,k=5),
           family=Gamma(link=log),data=trees)
ct6
plot(ct6,too.far=0.15)

## 4.6.3

gam(Volume~Height+s(Girth),family=Gamma(link=log),data=trees)

trees$Hclass <- factor(floor(trees$Height/10)-5,
                labels=c("small","medium","large"))

ct7 <- gam(Volume ~ Hclass+s(Girth),
           family=Gamma(link=log),data=trees)
par(mfrow=c(1,2))
plot(ct7,all.terms=TRUE)
anova(ct7)
AIC(ct7)
summary(ct7)

# }

Run the code above in your browser using DataLab