Returns a list of reliability statistics: Molenaar Sijtsma (MS, 1984, 1988) statistic (a.k.a rho; also see, Sijtsma & Molenaar, 1987; Van der Ark, 2010), Cronbach's (1951) alpha, Guttman's (1945) lambda 2, and the latent class reliability coefficient (LCRC; Van der Ark, Van der Palm, & Sijtsma, 2011).
check.reliability(X, MS = TRUE, alpha = TRUE, lambda.2 = TRUE,
LCRC = FALSE, nclass = nclass.default, irc = FALSE)
matrix or data frame of numeric data
containing the responses of nrow(X)
respondents to ncol(X)
items.
Missing values are not allowed
Boolean. If TRUE
, The MS statistic is computed.
Boolean. If TRUE
, Cronbach's alpha is computed.
Boolean. If TRUE
, Guttman's Lambda 2 is computed.
Boolean. If TRUE
, the LCRC is computed.
Integer. Number of latent classes for the computation of LCRC. By default: the number of items minus 1.
Boolean.If TRUE
, the item-rest correlation (a.k.a. corrected item-total correlation) is computed.
Molenaar Sijtsma statistic (a.k.a. rho).
Cronbach's alpha
Guttman's Lambda 2
LCRC
The computation of LCRC depends on the package poLCA
, which in its turn depends on
the packages MASS
and scatterplot3d
.
Computation of the LCRC may be time consuming if the number of latent classes is large.
The optimal number of latent classes should be determined prior to the computation of the LCRC,
using software for latent class analysis (e.g., the R-package poLCA
).
Cronbach, L. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334. https://doi.org/10.1007/BF02310555
Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika, 10,255-282. https://doi.org/10.1007/BF02288892
Molenaar, I. W., & Sijtsma, K. (1984). Internal consistency and reliability in Mokken's nonparametric item response model. Tijdschrift voor onderwijsresearch, 9, 257--268. Retrieved from https://pure.uvt.nl/ws/portalfiles/portal/1030704/INTERNAL.PDF
Molenaar, I. W., & Sijtsma, K. (1988). Mokken's approach to reliability estimation extended to multicategory items. Kwantitatieve methoden, 9(28), 115-126. Retrieved from https://pure.uvt.nl/ws/portalfiles/portal/1030575/MOKKEN__.PDF
Sijtsma, K., & Molenaar, I. W. (1987). Reliability of test scores in nonparametric item response theory. Psychometrika, 52,79-97. https://doi.org/10.1007/BF02293957
Van der Ark, L. A. (2007). Mokken scale analysis in R. Journal of Statistical Software. https://www.jstatsoft.org/article/view/v020i11
Van der Ark, L. A. (2010). Computation of the Molenaar Sijtsma statistic. In A. Fink, B. Lausen, W. Seidel, & A. Ultsch (Eds.), Advances in data analysis, data handling and business intelligence (pp. 775-784). Springer. https://doi.org/10.1007/978-3-642-01044-6_7
Van der Ark, L. A., Van der Palm, D. W., & Sijtsma, K. (2011). A latent class approach to estimating test-score reliability. Applied Psychological Measurement, 35, 380-392. https://doi.org/10.1177/0146621610392911
Van der Palm, D. W., Van der Ark, L. A. & Sijtsma, K. (2014). A flexible latent class approach to estimating test-score reliability. Journal of Educational Measurement, 51, 339-357. https://doi.org/10.1111/jedm.12053
check.errors
,
check.iio
,
check.monotonicity
,
check.pmatrix
check.restscore
,
coefH
# NOT RUN {
data(acl)
Communality <- acl[,1:10]
check.reliability(Communality, LCRC = TRUE)
# }
Run the code above in your browser using DataLab