data(gaussian.test)
data(learning.test)
# using a data frame and column labels.
ci.test(x = "F" , y = "B", z = c("C", "D"), data = gaussian.test)
#
# Pearson's Linear Correlation
#
# data: F ~ B | C + D
# cor = -0.1275, df = 4996, p-value < 2.2e-16
# alternative hypothesis: true value is not equal to 0
# using a data frame.
ci.test(gaussian.test)
#
# Pearson's Linear Correlation
#
# data: A ~ B | C + D + E + F + G
# cor = -0.5654, df = 4993, p-value < 2.2e-16
# alternative hypothesis: true value is not equal to 0
# using factor objects.
attach(learning.test)
ci.test(x = F , y = B, z = data.frame(C, D))
#
# Mutual Information (discrete)
#
# data: F ~ B | data.frame(C, D)
# mi = 25.2664, df = 18, p-value = 0.1178
# alternative hypothesis: true value is greater than 0
Run the code above in your browser using DataLab