## S3 method for class 'character':
ci.test(x, y = NULL, z = NULL, data, test = NULL, B = NULL, debug = FALSE, ...)
## S3 method for class 'data.frame':
ci.test(x, test = NULL, B = NULL, debug = FALSE, ...)
## S3 method for class 'numeric':
ci.test(x, y = NULL, z = NULL, test = NULL, B = NULL, debug = FALSE, ...)
## S3 method for class 'factor':
ci.test(x, y = NULL, z = NULL, test = NULL, B = NULL, debug = FALSE, ...)
## S3 method for class 'default':
ci.test(x, ...)
NULL
an independence test will be executed.test
argument is not a permutation test.TRUE
a lot of debugging output
is printed; otherwise the function is completely silent.htest
containing the following components:Edwards DI (2000). Introduction to Graphical Modelling. Springer, 2nd edition.
for shrinkage tests:
Hausser J, Strimmer K (2009). "Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks". Statistical Applications in Genetics and Molecular Biology, 10, 1469-1484.
Ledoit O, Wolf M (2003). "Improved Estimation of the Covariance Matrix of Stock Returns with an Application to Portfolio Selection". Journal of Empirical Finance, 10, 603-621.
for continuous permutation tests:
Legendre P (2000). "Comparison of Permutation Methods for the Partial Correlation and Partial Mantel Tests". Journal of Statistical Computation and Simulation, 67, 37-73.
for semiparametric discrete tests:
Tsamardinos I, Borboudakis G (2010). "Permutation Testing Improves Bayesian Network Learning". In "Machine Learning and Knowledge Discovery in Databases", pp. 322-337. Springer.
choose.direction
, arc.strength
.data(gaussian.test)
data(learning.test)
# using a data frame and column labels.
ci.test(x = "F" , y = "B", z = c("C", "D"), data = gaussian.test)
# using a data frame.
ci.test(gaussian.test)
# using factor objects.
attach(learning.test)
ci.test(x = F , y = B, z = data.frame(C, D))
Run the code above in your browser using DataLab