Learn R Programming

proportion (version 2.0.0)

ciAAS: Adjusted ArcSine method of CI estimation

Description

Adjusted ArcSine method of CI estimation

Usage

ciAAS(n, alp, h)

Arguments

n
- Number of trials
alp
- Alpha value (significance level required)
h
- adding factor

Value

A dataframe with
x
Number of successes (positive samples)
LAAS
Adjusted ArcSine Lower limit
UAAS
Adjusted ArcSine Upper Limit
LABB
Adjusted ArcSine Lower Abberation
UABB
Adjusted ArcSine Upper Abberation
ZWI
Zero Width Interval

Details

Wald-type interval for the arcsine transformation of the parameter p for the modified data \(x + h\) and \(n + (2*h)\) , where \(h > 0\) and for all \(x = 0, 1, 2 ..n.\)

References

[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.

[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.

[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.

See Also

prop.test and binom.test for equivalent base Stats R functionality, binom.confint provides similar functionality for 11 methods, wald2ci which provides multiple functions for CI calculation , binom.blaker.limits which calculates Blaker CI which is not covered here and propCI which provides similar functionality.

Other Adjusted methods of CI estimation: PlotciAAS, PlotciAAllg, PlotciAAll, PlotciALR, PlotciALT, PlotciASC, PlotciATW, PlotciAWD, ciAAll, ciALR, ciALT, ciASC, ciATW, ciAWD

Examples

Run this code
n=5; alp=0.05;h=2
ciAAS(n,alp,h)

Run the code above in your browser using DataLab