cim(cross, pheno.col=1, n.marcovar=3, window=10, method=c("em", "imp", "hk", "ehk"), imp.method=c("imp", "argmax"), error.prob=0.0001, map.function=c("haldane", "kosambi", "c-v", "morgan"), n.perm)
cross
. See
read.cross
for details.scanone
:If n.perm
is missing, the function returns the scan results as
a data.frame with three columns: chromosome, position, LOD score.
Attributes indicate the names and positions of the chosen marker
covariates.If n.perm
> 0, the function results the results of a
permutation test: a vector giving the genome-wide maximum LOD score in
each of the permutations.
fill.geno
to impute any missing marker
genotype data, either via a simple random imputation or using the
Viterbi algorithm.We then perform forward selection to a fixed number of markers. These will be used (again, with any missing data filled in) as covariates in the subsequent genome scan.
Jansen, R. C. and Stam, P. (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 136, 1447-1455. Zeng, Z. B. (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA, 90, 10972--10976.
Zeng, Z. B. (1994) Precision mapping of quantitative trait loci. Genetics, 136, 1457--1468.
add.cim.covar
, scanone
,
summary.scanone
, plot.scanone
,
fill.geno
data(hyper)
hyper <- calc.genoprob(hyper, step=2.5)
out <- scanone(hyper)
out.cim <- cim(hyper, n.marcovar=3)
plot(out, out.cim, chr=c(1,4,6,15), col=c("blue", "red"))
add.cim.covar(out.cim, chr=c(1,4,6,15))
Run the code above in your browser using DataLab