item.sim(nvar = 72, nsub = 500, circum = FALSE, xloading = 0.6, yloading = 0.6, gloading = 0, xbias = 0, ybias = 0, categorical = FALSE, low = -3, high = 3, truncate = FALSE, cutpoint = 0)
circ.sim(nvar = 72, nsub = 500, circum = TRUE, xloading = 0.6, yloading = 0.6, gloading = 0, xbias = 0, ybias = 0, categorical = FALSE, low = -3, high = 3, truncate = FALSE, cutpoint = 0)
item.dichot(nvar = 72, nsub = 500, circum = FALSE, xloading = 0.6, yloading = 0.6, gloading = 0, xbias = 0, ybias = 0, low = 0, high = 0)
The addition of item.dichot allows for testing structures with dichotomous items of different difficulty (endorsement) levels. Two factor data with either simple structure or circumplex structure are generated for two sets of items, one giving a score of 1 for all items greater than the low (easy) value, one giving a 1 for all items greater than the high (hard) value. The default values for low and high are 0. That is, all items are assumed to have a 50 percent endorsement rate. To examine the effect of item difficulty, low could be -1, high 1. This will lead to item endorsements of .84 for the easy and .16 for the hard. Within each set of difficulties, the first 1/4 are assigned to the first factor factor, the second to the second factor, the third to the first factor (but with negative loadings) and the fourth to the second factor (but with negative loadings).
Acton, G. S. and Revelle, W. (2004) Evaluation of Ten Psychometric Criteria for Circumplex Structure. Methods of Psychological Research Online, Vol. 9, No. 1
circ.simulation
, circ.tests
round(cor(circ.sim(nvar=8,nsub=200)),2)
plot(factor.pa(circ.sim(16,500),2)$loadings) #circumplex structure
#
#
plot(factor.pa(item.sim(16,500),2)$loadings) #simple structure
#
cluster.plot(factor.pa(item.dichot(16,low=0,high=1),2))
Run the code above in your browser using DataLab