## Not run:
# library(lavaan)
# HW.model <- ' visual =~ x1 + c1*x2 + x3
# textual =~ x4 + c1*x5 + x6
# speed =~ x7 + x8 + x9 '
#
# fit <- cfa(HW.model, data=HolzingerSwineford1939, group="school", meanstructure=TRUE)
#
# # Copy the summary of the lavaan object
# clipboard(fit)
#
# # Copy the modification indices and the model fit from the miPowerFit function
# clipboard(fit, "mifit")
#
# # Copy the parameter estimates
# clipboard(fit, "coef")
#
# # Copy the standard errors
# clipboard(fit, "se")
#
# # Copy the sample statistics
# clipboard(fit, "samp")
#
# # Copy the fit measures
# clipboard(fit, "fit")
#
# # Save the summary of the lavaan object
# saveFile(fit, "out.txt")
#
# # Save the modification indices and the model fit from the miPowerFit function
# saveFile(fit, "out.txt", "mifit")
#
# # Save the parameter estimates
# saveFile(fit, "out.txt", "coef")
#
# # Save the standard errors
# saveFile(fit, "out.txt", "se")
#
# # Save the sample statistics
# saveFile(fit, "out.txt", "samp")
#
# # Save the fit measures
# saveFile(fit, "out.txt", "fit")
# ## End(Not run)
Run the code above in your browser using DataLab