## plotting votes.diss(dissimilarity) in a bivariate plot and
## partitioning into 2 clusters
data(votes.repub)
votes.diss <- daisy(votes.repub)
votes.clus <- pam(votes.diss, 2, diss = TRUE)$clustering
clusplot(votes.diss, votes.clus, diss = TRUE, shade = TRUE)
clusplot(votes.diss, votes.clus, diss = TRUE,
col.p = votes.clus, labels = 4)# color points and label ellipses
clusplot(votes.diss, votes.clus, diss = TRUE, span = FALSE)# simple ellipses
if(interactive()) { # uses identify() *interactively* :
clusplot(votes.diss, votes.clus, diss = TRUE, shade = TRUE, labels = 1)
clusplot(votes.diss, votes.clus, diss = TRUE, labels = 5)# ident. only points
}
## plotting iris (data frame) in a 2-dimensional plot and partitioning
## into 3 clusters.
data(iris)
iris.x <- iris[, 1:4]
cl3 <- pam(iris.x, 3)$clustering
op <- par(mfrow= c(2,2))
clusplot(iris.x, cl3, color = TRUE)
U <- par("usr")
## zoom in :
rect(0,-1, 2,1, border = "orange", lwd=2)
clusplot(iris.x, cl3, color = TRUE, xlim = c(0,2), ylim = c(-1,1))
box(col="orange",lwd=2); mtext("sub region", font = 4, cex = 2)
## or zoom out :
clusplot(iris.x, cl3, color = TRUE, xlim = c(-4,4), ylim = c(-4,4))
mtext("`super' region", font = 4, cex = 2)
rect(U[1],U[3], U[2],U[4], lwd=2, lty = 3)
# reset graphics
par(op)
Run the code above in your browser using DataLab