Returns a new SparkDataFrame that has exactly numPartitions
partitions.
This operation results in a narrow dependency, e.g. if you go from 1000 partitions to 100
partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of
the current partitions. If a larger number of partitions is requested, it will stay at the
current number of partitions.
coalesce(x, ...)# S4 method for SparkDataFrame
coalesce(x, numPartitions)
a SparkDataFrame.
additional argument(s).
the number of partitions to use.
However, if you're doing a drastic coalesce on a SparkDataFrame, e.g. to numPartitions = 1,
this may result in your computation taking place on fewer nodes than
you like (e.g. one node in the case of numPartitions = 1). To avoid this,
call repartition
. This will add a shuffle step, but means the
current upstream partitions will be executed in parallel (per whatever
the current partitioning is).
repartition, repartitionByRange
Other SparkDataFrame functions:
SparkDataFrame-class
,
agg()
,
alias()
,
arrange()
,
as.data.frame()
,
attach,SparkDataFrame-method
,
broadcast()
,
cache()
,
checkpoint()
,
collect()
,
colnames()
,
coltypes()
,
createOrReplaceTempView()
,
crossJoin()
,
cube()
,
dapplyCollect()
,
dapply()
,
describe()
,
dim()
,
distinct()
,
dropDuplicates()
,
dropna()
,
drop()
,
dtypes()
,
exceptAll()
,
except()
,
explain()
,
filter()
,
first()
,
gapplyCollect()
,
gapply()
,
getNumPartitions()
,
group_by()
,
head()
,
hint()
,
histogram()
,
insertInto()
,
intersectAll()
,
intersect()
,
isLocal()
,
isStreaming()
,
join()
,
limit()
,
localCheckpoint()
,
merge()
,
mutate()
,
ncol()
,
nrow()
,
persist()
,
printSchema()
,
randomSplit()
,
rbind()
,
rename()
,
repartitionByRange()
,
repartition()
,
rollup()
,
sample()
,
saveAsTable()
,
schema()
,
selectExpr()
,
select()
,
showDF()
,
show()
,
storageLevel()
,
str()
,
subset()
,
summary()
,
take()
,
toJSON()
,
unionByName()
,
union()
,
unpersist()
,
withColumn()
,
withWatermark()
,
with()
,
write.df()
,
write.jdbc()
,
write.json()
,
write.orc()
,
write.parquet()
,
write.stream()
,
write.text()
# NOT RUN {
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
newDF <- coalesce(df, 1L)
# }
Run the code above in your browser using DataLab