Learn R Programming

LICORS (version 0.2.0)

compute_NEC: Compute Negative Entropy Criterion (NEC)

Description

Computes the negative entropy criterion (NEC) to assess the number of clusters in a mixture model. See References for details.

Usage

compute_NEC(weight.matrix, loglik.1 = NULL, loglik.k = NULL)

Arguments

weight.matrix

\(N \times K\) weight matrix

loglik.1

baseline log-likelihood for \(K=1\) cluster model

loglik.k

log-likelihood for \(K\) cluster model

References

Christophe Biernacki, Gilles Celeux, and G\'erand Govaert(1999). ``An improvement of the NEC criterion for assessing the number of clusters in a mixture model''. Non-Linear Anal. 20, 3, 267-272.

See Also

compute_mixture_penalty

Examples

Run this code
# NOT RUN {
WW <- matrix(c(rexp(10, 1/10), runif(10)), ncol = 5, byrow = FALSE)
WW <- normalize(WW)
compute_NEC(WW, -2, -1)
# }

Run the code above in your browser using DataLab