coordProj(data, dimens=c(1,2), parameters=NULL, z=NULL,
classification=NULL, truth=NULL, uncertainty=NULL,
what = c("classification", "errors", "uncertainty"),
quantiles = c(0.75, 0.95), symbols=NULL, colors=NULL, scale = FALSE,
xlim=NULL, ylim=NULL, CEX = 1, PCH = ".", identify = FALSE, ...)c(1,2), in which the first
dimension is plotted against the second.[i,k]th entry gives the
probability of observation i belonging to the kth class.
Used to compute classification and
uncertainty if those arguments aren't available.data. If present argument z
will be ignored.classification
or z is also present,
this is used for displaying classification errors.z
will be ignored."classification"
(default), "errors", "uncertainty".classification. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order usedclassification. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order used by the fuscale=FALSEC. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012). mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington.
clPairs,
randProj,
mclust2Dplot,
mclust.optionsest <- meVVV(iris[,-5], unmap(iris[,5]))
par(pty = "s", mfrow = c(1,1))
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
what = "classification", identify = TRUE)
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
truth = iris[,5], what = "errors", identify = TRUE)
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
what = "uncertainty", identify = TRUE)Run the code above in your browser using DataLab