coordProj(data, dimens=c(1,2), parameters=NULL, z=NULL,
classification=NULL, truth=NULL, uncertainty=NULL,
what = c("classification", "errors", "uncertainty"),
quantiles = c(0.75, 0.95), symbols=NULL, colors=NULL, scale = FALSE,
xlim=NULL, ylim=NULL, CEX = 1, PCH = ".", identify = FALSE, ...)
c(1,2)
, in which the first
dimension is plotted against the second.[i,k]
th entry gives the
probability of observation i belonging to the kth class.
Used to compute classification
and
uncertainty
if those arguments aren't available.data
. If present argument z
will be ignored.classification
or z
is also present,
this is used for displaying classification errors.z
will be ignored."classification"
(default), "errors"
, "uncertainty"
.classification
. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order usedclassification
. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order used by the fuscale=FALSE
C. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012). mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington.
clPairs
,
randProj
,
mclust2Dplot
,
mclust.options
est <- meVVV(iris[,-5], unmap(iris[,5]))
par(pty = "s", mfrow = c(1,1))
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
what = "classification", identify = TRUE)
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
truth = iris[,5], what = "errors", identify = TRUE)
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
what = "uncertainty", identify = TRUE)
Run the code above in your browser using DataLab