
"corExp"
class,
representing an exponential spatial correlation structure. Letting
$d$ denote the range and $n$ denote the nugget
effect, the correlation between two observations a distance
$r$ apart is $\exp(-r/d)$ when no nugget effect
is present and $(1-n) \exp(-r/d)$ when a nugget
effect is assumed. Objects created using this constructor must later be
initialized using the appropriate Initialize
method.corExp(value, form, nugget, metric, fixed)
nugget
is FALSE
, value
can
have only one element, corresponding to the "range" of the
exponential correlation structure, which must be gre~ S1+...+Sp
, or
~ S1+...+Sp | g
, specifying spatial covariates S1
through Sp
and, optionally, a grouping factor g
.
When a grouping factor is presenFALSE
."euclidean"
for the root sum-of-squares of distances;
"maximum"
for the maximum difference; and "manhattan
FALSE
, in which case
the coefficients are allowed to vary."corExp"
, also inheriting from class
"corSpatial"
, representing an exponential spatial correlation
structure.Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp. p. 238.
corClasses
,
Initialize.corStruct
,
summary.corStruct
,
dist
sp1 <- corExp(form = ~ x + y + z)
# Pinheiro and Bates, p. 238
spatDat <- data.frame(x = (0:4)/4, y = (0:4)/4)
cs1Exp <- corExp(1, form = ~ x + y)
cs1Exp <- Initialize(cs1Exp, spatDat)
corMatrix(cs1Exp)
cs2Exp <- corExp(1, form = ~ x + y, metric = "man")
cs2Exp <- Initialize(cs2Exp, spatDat)
corMatrix(cs2Exp)
cs3Exp <- corExp(c(1, 0.2), form = ~ x + y,
nugget = TRUE)
cs3Exp <- Initialize(cs3Exp, spatDat)
corMatrix(cs3Exp)
# example lme(..., corExp ...)
# Pinheiro and Bates, pp. 222-247
# p. 222
options(contrasts = c("contr.treatment", "contr.poly"))
fm1BW.lme <- lme(weight ~ Time * Diet, BodyWeight,
random = ~ Time)
# p. 223
fm2BW.lme <- update(fm1BW.lme, weights = varPower())
# p. 246
fm3BW.lme <- update(fm2BW.lme,
correlation = corExp(form = ~ Time))
# p. 247
fm4BW.lme <-
update(fm3BW.lme, correlation = corExp(form = ~ Time,
nugget = TRUE))
anova(fm3BW.lme, fm4BW.lme)
Run the code above in your browser using DataLab