Learn R Programming

TitanCNA (version 1.10.0)

correctReadDepth: Correct GC content and mappability biases in sequencing data read counts

Description

Correct GC content and mappability biases in tumour sequence read counts using Loess curve fitting. Wrapper for function in HMMcopy.

Usage

correctReadDepth(tumWig, normWig, gcWig, mapWig, genomeStyle = "NCBI", targetedSequence = NULL)

Arguments

tumWig
File path to fixedStep WIG format file for the tumour sample. See wigToRangedData in the HMMcopy for more details.
normWig
File path to fixedStep WIG format file for the normal sample.
gcWig
File path to fixedStep WIG format file for the GC content based on the specific reference genome sequence used.
mapWig
File path to fixedStep WIG format file for the mappability scores computed on the specific reference genome used.
genomeStyle
The genome style to use for chromosomes by TitanCNA. Use one of ‘NCBI’ or ‘UCSC’. It does not matter what style is found in inCounts, genomeStyle will be the style returned.
targetedSequence
data.frame with 3 columns: chr, start position, stop position. Use this argument for exome capture sequencing or targeted deep sequencing data. This is experimental and may not work as desired.

Value

data.frame containing columns:
chr
Chromosome; uses 'X' and 'Y' for sex chromosomes
start
Start genomic coordinate for bin in which read count is corrected
end
End genomic coordinate for bin in which read count is corrected
logR
Log ratio, log2(tumour:normal), for bin in which read count is corrected

Details

Wrapper for correctReadcount in HMMcopy package. It uses a sampling of 50000 bins to find the Loess fit. Then, the log ratio for every bin is returned as the log base 2 of the ratio between the corrected tumour read count and the corrected normal read count.

References

Ha, G., Roth, A., Lai, D., Bashashati, A., Ding, J., Goya, R., Giuliany, R., Rosner, J., Oloumi, A., Shumansky, K., Chin, S.F., Turashvili, G., Hirst, M., Caldas, C., Marra, M. A., Aparicio, S., and Shah, S. P. (2012). Integrative analysis of genome wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple negative breast cancer. Genome Research, 22(10):1995,2007. (PMID: 22637570)

Ha, G., Roth, A., Khattra, J., Ho, J., Yap, D., Prentice, L. M., Melnyk, N., McPherson, A., Bashashati, A., Laks, E., Biele, J., Ding, J., Le, A., Rosner, J., Shumansky, K., Marra, M. A., Huntsman, D. G., McAlpine, J. N., Aparicio, S. A. J. R., and Shah, S. P. (2014). TITAN: Inference of copy number architectures in clonal cell populations from tumour whole genome sequence data. Genome Research, 24: 1881-1893. (PMID: 25060187)

See Also

correctReadcount and wigToRangedData in the HMMcopy package. WIG: http://genome.ucsc.edu/goldenPath/help/wiggle.html

Examples

Run this code
tumWig <- system.file("extdata", "test_tum_chr2.wig", package = "TitanCNA")
normWig <- system.file("extdata", "test_norm_chr2.wig", package = "TitanCNA")
gc <- system.file("extdata", "gc_chr2.wig", package = "TitanCNA")
map <- system.file("extdata", "map_chr2.wig", package = "TitanCNA")

#### GC AND MAPPABILITY CORRECTION ####
cnData <- correctReadDepth(tumWig, normWig, gc, map)

Run the code above in your browser using DataLab