# NOT RUN {
cosgrow(0.3)
cosgrow(0.3,ref='Planck')
cosgrowz(0.3)
cosgrowa(0.3)
cosgrowH(0.3)
cosgrowCoVel(0.3)
cosgrowPecVel(0.3,0.31)
cosgrowOmegaM(0.3)
cosgrowOmegaL(0.3)
cosgrowOmegaK(0.3)
sum(cosgrowOmegaM(0.3)+cosgrowOmegaL(0.3)+cosgrowOmegaK(0.3)) #Still 1.
cosgrowDecelq(0.3)
cosgrowEoSwDE(0.3)
cosgrowFactor(0.3)
cosgrowFactorApprox(0.3) #Approximation better than 1% for reasonable cosmologies.
cosgrowRate(0.3)
cosgrowRateApprox(0.3) #Approximation better than 1% for reasonable cosmologies.
cosgrowRhoCrit(0.3)
cosgrowRhoMean(0.3)
cosgrowRhoMean(0)-cosgrowRhoMean(2,Dist='Ang')/(1+2)^3 #Mass is conserved in co-vol
cosgrowRhoMean(0)-cosgrowRhoMean(10,Dist='Co') #Mass is conserved in co-vol
# Various recessional velocities (see Figure 2 of Davis & Lineweaver 2004):
plot(10^seq(-1,4,by=0.01), cosgrowCoVel(10^seq(-1,4,by=0.01), ref='planck')
/299792.458, type='l', log='x', xlab='z', ylab='Cosmological Recession Velocity / c')
lines(10^seq(-1,4,by=0.01), cosgrowPecVel(0,10^seq(-1,4,by=0.01))/299792.458, col='red')
lines(10^seq(-1,4,by=0.01), 10^seq(-1,4,by=0.01), col='blue')
abline(h=1,v=1.5,lty=2)
legend('topleft', legend=c('GR', 'SR', 'Approx (cz)', 'Superluminal'), lty=c(1,1,1,2),
col=c('black','red','blue','black'))
# Comparison of the various energy densities that make up the Universe for Planck 2013:
plot(cosdistUniAgeAtz(10^seq(-3,4.9,by=0.1), ref='Planck')*1e9,
cosgrowRhoCrit(10^seq(-3,4.9,by=0.1), ref='Planck', Dist='m', Mass='kg')*
cosgrowOmegaR(10^seq(-3,4.9,by=0.1), ref='Planck'), type='l',log='xy',
xlab='Years since Universe formed', ylab=expression('Energy Density'*(kg/m^3)))
lines(cosdistUniAgeAtz(10^seq(-3,4.9,by=0.1), ref='Planck')*1e9,
cosgrowRhoCrit(10^seq(-3,4.9,by=0.1), ref='Planck', Dist='m', Mass='kg')*
cosgrowOmegaM(10^seq(-3,4.9,by=0.1), ref='Planck'), col='red')
lines(cosdistUniAgeAtz(10^seq(-3,4.9,by=0.1), ref='Planck')*1e9,
cosgrowRhoCrit(10^seq(-3,4.9,by=0.1), ref='Planck', Dist='m', Mass='kg')*
cosgrowOmegaL(10^seq(-3,4.9,by=0.1), ref='Planck'), col='blue')
abline(v=cosdistUniAgeAtz(0.33,ref='Planck')*1e9,lty=2) # Matter = Vacuum
abline(v=cosdistUniAgeAtz(3391,ref='Planck')*1e9,lty=2) # Matter = Radiation
legend('topright', legend=c('Radiation Energy Density', 'Matter Energy Density',
'Vacuum Energy Density'), lty=1, col=c('black','red','blue'))
# Where's the acceleration?
plot(seq(0,2,len=1e3),cosgrowH(seq(0,2,len=1e3)),type='l',xlab='z',
ylab='H(z) / km/s / pMpc')
# There it is!
plot(seq(0,2,len=1e3),cosgrowH(seq(0,2,len=1e3))/(1+seq(0,2,len=1e3)),
type='l',xlab='z',ylab='H(z) / km/s / cMpc')
#When does it start accelerating?
accel.loc=which.min(abs(cosgrowDecelq(seq(0,2,len=1e3))))
abline(v=seq(0,2,len=1e3)[accel.loc],lty=2)
# }
Run the code above in your browser using DataLab