Learn R Programming

Tsphere (version 1.0)

covTranspose11: Covariance Estimation.

Description

Inverse row and column covariance estimation for the L1 penalized matrix-variate normal model.

Usage

covTranspose11(xc, rhor, rhoc, row = TRUE, sigi.init = NULL, 
delti.init = NULL, thr = 1e-04, maxit = 1000, trace = TRUE,  thr.glasso
= 1e-04,  maxit.glasso = 1000, pen.diag = TRUE)

Arguments

xc
Centered data matrix.
rhor
Row regularization parameter.
rhoc
Column regularization parameter.
row
Logical. TRUE = Start with row covariance.
sigi.init
Initialization for the row precision matrix. (Optional).
delti.init
Initialization for the column precision matrix. (Optional).
thr
Convergence threshold.
maxit
Maximum number of iterations.
trace
Prints matrix-variate log-likelihood for each iteration.
thr.glasso
Convergence threshold for the graphical lasso.
maxit.glasso
Maximum number of iterations for the graphical lasso.
pen.diag
Logical. Indicates whether the diagonal should be penalized.

Value

  • SigmahatEstimated row covariance.
  • DeltahatEstimated column covariance.
  • SigmaihatEstimated sparse row precision matrix.
  • DeltaihatEstimated sparse column precision matrix.
  • loglikeTrace of the penalized log-likelihood at each iteration.

Details

Estimates row and column precision matrix via L1 penalized Transposable Regularized Covariance Models.

References

G. I. Allen and R. Tibshirani, "Transposable regularized covariance models with an application to missing data imputation", Annals of Applied Statistics, 4:2, 764-790, 2010.

See Also

TransSphere