covpTW(n, alp, a, b, t1, t2)
[2] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.
[3] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.
[4] 2001 Brown LD, Cai TT and DasGupta A. Interval estimation for a binomial proportion. Statistical Science: 16; 101 - 133.
[5] 2002 Pan W. Approximate confidence intervals for one proportion and difference of two proportions Computational Statistics and Data Analysis 40, 128, 143-157.
[6] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.
[7] 2014 Martin Andres, A. and Alvarez Hernandez, M. Two-tailed asymptotic inferences for a proportion. Journal of Applied Statistics, 41, 7, 1516-1529
PlotcovpAS
,
PlotcovpAll
, PlotcovpBA
,
PlotcovpEX
, PlotcovpLR
,
PlotcovpLT
, PlotcovpSC
,
PlotcovpTW
, PlotcovpWD
,
covpAS
, covpAll
,
covpBA
, covpEX
,
covpLR
, covpLT
,
covpSC
, covpWD
n= 10; alp=0.05; a=1;b=1; t1=0.93;t2=0.97
covpTW(n,alp,a,b,t1,t2)
Run the code above in your browser using DataLab