# Example 1; Fit an unequal tolerances model to the hunting spiders data
hspider[,1:6]=scale(hspider[,1:6]) # Standardize the environmental variables
set.seed(1234) # For reproducibility of the results
p1ut = cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,
Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~
WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
fam = poissonff, data = hspider, Crow1positive = FALSE,
EqualTol = FALSE)
sort(p1ut@misc$deviance.Bestof) # A history of all the iterations
if(deviance(p1ut) > 1177) stop("suboptimal fit obtained")
S = ncol(p1ut@y) # Number of species
clr = (1:(S+1))[-7] # Omits yellow
lvplot(p1ut, y = TRUE, lcol=clr, pch=1:S, pcol=clr, las=1) # ordination diagram
legend("topright", leg=colnames(p1ut@y), col=clr,
pch=1:S, merge = TRUE, bty="n", lty=1:S, lwd=2)
(cp = Coef(p1ut))
(a = cp@lv[cp@lvOrder]) # The ordered site scores along the gradient
# Names of the ordered sites along the gradient:
rownames(cp@lv)[cp@lvOrder]
(a = (cp@Optimum)[,cp@OptimumOrder]) # The ordered optima along the gradient
a = a[!is.na(a)] # Delete the species that is not unimodal
names(a) # Names of the ordered optima along the gradient
trplot(p1ut, whichSpecies=1:3, log="xy", type="b", lty=1, lwd=2,
col=c("blue","red","green"), label = TRUE) -> ii # trajectory plot
legend(0.00005, 0.3, paste(ii$species[,1], ii$species[,2], sep=" and "),
lwd=2, lty=1, col=c("blue","red","green"))
abline(a=0, b=1, lty="dashed")
S = ncol(p1ut@y) # Number of species
clr = (1:(S+1))[-7] # Omits yellow
persp(p1ut, col=clr, label = TRUE, las=1) # perspective plot
# Example 2; Fit an equal tolerances model. Less numerically fraught.
set.seed(1234)
p1et = cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,
Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~
WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
fam = poissonff, data = hspider, Crow1positive = FALSE)
sort(p1et@misc$deviance.Bestof) # A history of all the iterations
if(deviance(p1et) > 1586) stop("suboptimal fit obtained")
S = ncol(p1et@y) # Number of species
clr = (1:(S+1))[-7] # Omits yellow
persp(p1et, col=clr, label = TRUE, las=1)
# Example 3: A rank-2 equal tolerances CQO model with Poisson data
# This example is numerically fraught... need IToler = TRUE too.
set.seed(555)
p2 = cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,
Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~
WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
fam = poissonff, data = hspider, Crow1positive = FALSE,
IToler = TRUE, Rank = 2, Bestof = 1, isdlv = c(2.1, 0.9))
sort(p2@misc$deviance.Bestof) # A history of all the iterations
if(deviance(p2) > 1127) stop("suboptimal fit obtained")
lvplot(p2, ellips = FALSE, label = TRUE, xlim=c(-3,4),
C = TRUE, Ccol="brown", sites = TRUE, scol="grey",
pcol="blue", pch="+", chull = TRUE, ccol="grey")
# Example 4: species packing model with presence/absence data
set.seed(2345)
n = 200; p = 5; S = 5
mydata = rcqo(n, p, S, fam="binomial", hiabundance=4,
EqualTol = TRUE, ESOpt = TRUE, EqualMax = TRUE)
myform = attr(mydata, "formula")
set.seed(1234)
b1et = cqo(myform, binomialff(mv = TRUE, link="cloglog"), data = mydata)
sort(b1et@misc$deviance.Bestof) # A history of all the iterations
lvplot(b1et, y = TRUE, lcol=1:S, pch=1:S, pcol=1:S, las=1)
Coef(b1et)
# Compare the fitted model with the 'truth'
cbind(truth=attr(mydata, "ccoefficients"), fitted=ccoef(b1et))
# Example 5: Plot the deviance residuals for diagnostic purposes
set.seed(1234)
p1et = cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,
Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~
WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
fam=poissonff, data=hspider, EqualTol = TRUE, trace = FALSE)
sort(p1et@misc$deviance.Bestof) # A history of all the iterations
if(deviance(p1et) > 1586) stop("suboptimal fit obtained")
S = ncol(p1et@y)
par(mfrow=c(3,4))
for(ii in 1:S) {
tempdata = data.frame(lv1 = c(lv(p1et)), sppCounts = p1et@y[,ii])
tempdata = transform(tempdata, myOffset = -0.5 * lv1^2)
# For species ii, refit the model to get the deviance residuals
fit1 = vglm(sppCounts ~ offset(myOffset) + lv1, fam=poissonff,
data=tempdata, trace = FALSE)
# For checking: this should be 0
print("max(abs(c(Coef(p1et)@B1[1,ii], Coef(p1et)@A[ii,1]) - coef(fit1)))")
print( max(abs(c(Coef(p1et)@B1[1,ii], Coef(p1et)@A[ii,1]) - coef(fit1))) )
# # Plot the deviance residuals
devresid = resid(fit1, type = "deviance")
predvalues = predict(fit1) + fit1@offset
ooo = with(tempdata, order(lv1))
with(tempdata, plot(lv1, predvalues + devresid, col="darkgreen",
xlab="lv1", ylab="", main=colnames(p1et@y)[ii]))
with(tempdata, lines(lv1[ooo], predvalues[ooo], col="blue"))
}
Run the code above in your browser using DataLab