
csetMV(dat, n, method, alpha=0.1, scale="var", steps=500)
method="cheng.iles"
or "min.area"
.method="cheng.iles"
or "min.area"
.method
s.0.1
.var
) or standard deviation (sd
) is to be plotted on the y axis. Not required for method="cheng.iles"
or "min.area"
.800
.JOCMV
.method
s are: mood
for the classical region described in Mood (1950); large
for the large-sample approximation region described in section 4.1 of Arnold & Shavelle (1998); plugin
for a plug-in variant of the large-sample approximation region described in section 4.2 of Arnold & Shavelle (1998); pluginF
for the plug-in variant of the large-sample approximation region described in section 4.3 of Arnold & Shavelle (1998) using an asymptotic F distribution as in Douglas (1993); lrt
for the likelihood ratio test region described in section 4.4 of Arnold & Shavelle (1998); cheng.iles
for the region described in Cheng & Iles (1983); min.area
for the minimum-area region described in Frey et al. (2009).R. C. H. Cheng & T. C. Iles (1983) Confidence bands for cumulative distribution functions of continuous random variables. Technometrics, 25(1), 77--86.
J. B. Douglas (1993) Confidence regions for parameter pairs. The American Statistician, 47(1), 43--45.
Jesse Frey, Osvaldo Marrero, Douglas Norton (2009) Minimum-area confidence sets for a normal distribution. Journal of Statistical Planning and Inference, 139(3), 1023--1032.
Alexander M. Mood (1950) Introduction to the Theory of Statistics. McGraw-Hill, New York, NY.
cset
for (simultaneous) confidence regions and intervals around multivariate normal means.## Not run: ------------------------------------
# # Simultaneous 90% confidence regions for the mean and variance or sd of univariate normal data
#
# univar <- rnorm(n=50)
#
# moodvar <- csetMV(dat=univar, method="mood", alpha=0.1, scale="var")
# summary(moodvar)
# plot(moodvar)
#
# moodsd <- csetMV(dat=univar, method="mood", alpha=0.1, scale="sd")
# summary(moodsd)
# plot(moodsd)
## ---------------------------------------------
Run the code above in your browser using DataLab