Learn R Programming

kernlab (version 0.9-24)

csi-class: Class "csi"

Description

The reduced Cholesky decomposition object

Arguments

Objects from the Class

Objects can be created by calls of the form new("csi", ...). or by calling the csi function.

Slots

.Data:
Object of class "matrix" contains the decomposed matrix
pivots:
Object of class "vector" contains the pivots performed
diagresidues:
Object of class "vector" contains the diagonial residues
maxresiduals:
Object of class "vector" contains the maximum residues
predgain
Object of class "vector" contains the predicted gain before adding each column
truegain
Object of class "vector" contains the actual gain after adding each column
Q
Object of class "matrix" contains Q from the QR decomposition of the kernel matrix
R
Object of class "matrix" contains R from the QR decomposition of the kernel matrix

Extends

Class "matrix", directly.

Methods

diagresidues
signature(object = "csi"): returns the diagonial residues
maxresiduals
signature(object = "csi"): returns the maximum residues
pivots
signature(object = "csi"): returns the pivots performed
predgain
signature(object = "csi"): returns the predicted gain before adding each column
truegain
signature(object = "csi"): returns the actual gain after adding each column
Q
signature(object = "csi"): returns Q from the QR decomposition of the kernel matrix
R
signature(object = "csi"): returns R from the QR decomposition of the kernel matrix

See Also

csi, inchol-class

Examples

Run this code
data(iris)

## create multidimensional y matrix
yind <- t(matrix(1:3,3,150))
ymat <- matrix(0, 150, 3)
ymat[yind==as.integer(iris[,5])] <- 1

datamatrix <- as.matrix(iris[,-5])
# initialize kernel function
rbf <- rbfdot(sigma=0.1)
rbf
Z <- csi(datamatrix,ymat, kernel=rbf, rank = 30)
dim(Z)
pivots(Z)
# calculate kernel matrix
K <- crossprod(t(Z))
# difference between approximated and real kernel matrix
(K - kernelMatrix(kernel=rbf, datamatrix))[6,]

Run the code above in your browser using DataLab