## example 1
# Fit the non-monotonic concentration-response data
x <- hormesis$OmimCl$x
expr <- hormesis$OmimCl$y
curveFit(x, expr, eq = 'Biphasic', param = c(-0.34, 0.001, 884, 0.01, 128), effv = 0.5)
x <- hormesis$HmimCl$x
expr <- hormesis$HmimCl$y
curveFit(x, expr, eq = 'Biphasic', param = c(-0.59, 0.001, 160,0.05, 19), effv = c(0.05, 0.5))
x <- hormesis$ACN$x
expr <- hormesis$ACN$y
curveFit(x, expr, eq = 'Brain_Consens', param = c(2.5, 2.8, 0.6, 2.44), effv = c(0.05, 0.5))
x <- hormesis$Acetone$x
expr <- hormesis$Acetone$y
curveFit(x, expr, eq = 'BCV', param = c(1.0, 3.8, 0.6, 2.44), effv = c(0.05, 0.5))
## example 2
# Fit the concentration-response data of heavy metal Ni(2+) on MCF-7 cells.
# Calculate the concentrations that cause 5\% and 50\% inhibition of the growth of MCF-7 and
# corresponding confidence intervals.
x <- cytotox$Ni$x
expr <- cytotox$Ni$y
curveFit(x, expr, eq = 'Logit', param = c(12, 3), effv = c(0.05, 0.5))
## example 3
# Fit the concentration-response data of Paromomycin Sulfate (PAR) on photobacteria.
# Calculate the concentrations that cause 5\% and 50\% inhibition of the growth of photobacteria
# and corresponding confidence intervals.
x <- antibiotox$PAR$x
expr <- antibiotox$PAR$y
curveFit(x, expr, eq = 'Logit', param = c(26, 4), effv = c(0.05, 0.5))
Run the code above in your browser using DataLab