Learn R Programming

dprep (version 3.0.2)

cv10mlp: 10-fold cross validation error estimation for the multilayer perceptron classifier

Description

10-fold cross validation estimation error for the multilayer perceptron classifier.

Usage

cv10mlp(data, units, decay = 0, maxwts = 1000, maxit = 100, repet)

Arguments

data
The name of the dataset
units
The number of units in the hidden layer
decay
The decay parameter
maxwts
The maximum number of weights to be estimated in the network
maxit
The maximum number of iterations
repet
The number of repetitions

Value

Returns the mean cross validation for the multilayer perceptron classifier.

References

Ripley, B.D. (1996). Pattern recognition and Neural networks. Cambridge University Press

Venables,W.N., and Ripley, B.D. (2002). Modern Applied Statistics with S. Fourth edition, Springer

See Also

crossval, cv10log

Examples

Run this code
## Not run: #-----cross validation using the MLP classifier---
# data(heartc)
# heartc=ce.impute(heartc,"mean",1:13)
# cv10mlp(heartc,25,decay=0.1,maxwts=1000,maxit=100,repet=2)
# ## End(Not run)

Run the code above in your browser using DataLab