# NOT RUN {
dapply(mtcars, log) # Take natural log of each variable
dapply(mtcars, log, return = "matrix") # Return as matrix
m <- as.matrix(mtcars)
dapply(m, log) # Same thing
dapply(m, log, return = "data.frame") # Return data frame from matrix
dapply(mtcars, sum); dapply(m, sum) # Computing sum of each column, return as vector
dapply(mtcars, sum, drop = FALSE) # This returns a data.frame of 1 row
dapply(mtcars, sum, MARGIN = 1) # Compute row-sum of each column, return as vector
dapply(m, sum, MARGIN = 1) # Same thing for matrices, faster than apply(m, 1, sum)
dapply(m, sum, MARGIN = 1, drop = FALSE) # Gives matrix with one column
dapply(m, quantile, MARGIN = 1) # Compute row-quantiles
dapply(m, quantile) # Column-quantiles
dapply(mtcars, quantile, MARGIN = 1) # Same for data frames, output is also a data.frame
dapply(mtcars, quantile)
# Let's now take a more complex classed object, like a dplyr grouped tibble
library(dplyr)
gmtcars <- group_by(mtcars,cyl,vs,am)
dapply(gmtcars, log) # Still gives a grouped tibble back
dapply(gmtcars, log, MARGIN = 1)
dapply(gmtcars, quantile, MARGIN = 1) # Also works for quantiles
dapply(gmtcars, log, return = "matrix") # Output as matrix
# }
Run the code above in your browser using DataLab