### load data
dat <- get(data(dat.curtis1998))
### calculate log ratio of means and corresponding sampling variances
dat <- escalc(measure="ROM", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat)
dat
### meta-analysis of log ratio of means using a random-effects model
res <- rma(yi, vi, method="DL", data=dat)
res
### average ratio of means with 95% CI
predict(res, transf=exp, digits=2)
### meta-analysis for plants grown under nutrient stress
res <- rma(yi, vi, method="DL", data=dat, subset=(xtrt=="FERT" & level=="LOW"))
predict(res, transf=exp, digits=2)
### meta-analysis for plants grown under low light conditions
res <- rma(yi, vi, method="DL", data=dat, subset=(xtrt=="LIGHT" & level=="LOW"))
predict(res, transf=exp, digits=2)
Run the code above in your browser using DataLab