# NOT RUN {
library(sirt)
library(WrightMap)
# In the following, ConQuest will also be used for estimation.
path.conquest <- "C:/Conquest" # path of the ConQuest console.exe
setwd( "p:/my_files/ConQuest_analyses" ) # working directory
#############################################################################
# EXAMPLE 01: Rasch model data.cqc01
#############################################################################
data(data.cqc01)
dat <- data.cqc01
#********************************************
#*** Model 01: Estimate Rasch model
mod01 <- TAM::tam.mml(dat)
summary(mod01)
#------- ConQuest
# estimate model
cmod01 <- sirt::R2conquest( dat, name="mod01", path.conquest=path.conquest)
summary(cmod01) # summary output
# read shw file with some terms
shw01a <- sirt::read.show( "mod01.shw" )
cmod01$shw.itemparameter
# read person item maps
pi01a <- sirt::read.pimap( "mod01.shw" )
cmod01$shw.pimap
# read plausible values (npv=10 plausible values)
pv01a <- sirt::read.pv(pvfile="mod01.pv", npv=10)
cmod01$person
# read ConQuest model
res01a <- WrightMap::CQmodel(p.est="mod01.wle", show="mod01.shw", p.type="WLE" )
print(res01a)
# plot item fit
WrightMap::fitgraph(res01a)
# Wright map
plot(res01a, label.items.srt=90 )
#############################################################################
# EXAMPLE 02: Partial credit model and rating scale model data.cqc02
#############################################################################
data(data.cqc02)
dat <- data.cqc02
#********************************************
# Model 02a: Partial credit model in ConQuest parametrization 'item+item*step'
mod02a <- TAM::tam.mml( dat, irtmodel="PCM2" )
summary(mod02a, file="mod02a")
fit02a <- TAM::tam.fit(mod02a)
summary(fit02a)
#--- ConQuest
# estimate model
maxK <- max( dat, na.rm=TRUE )
cmod02a <- sirt::R2conquest( dat, itemcodes=0:maxK, model="item+item*step",
name="mod02a", path.conquest=path.conquest)
summary(cmod02a) # summary output
# read ConQuest model
res02a <- WrightMap::CQmodel(p.est="mod02a.wle", show="mod02a.shw", p.type="WLE" )
print(res02a)
# Wright map
plot(res02a, label.items.srt=90 )
plot(res02a, item.table="item")
#********************************************
# Model 02b: Rating scale model
mod02b <- TAM::tam.mml( dat, irtmodel="RSM" )
summary( mod02b )
#############################################################################
# EXAMPLE 03: Faceted Rasch model for rating data data.cqc03
#############################################################################
data(data.cqc03)
# select items
resp <- data.cqc03[, c("crit1","crit2") ]
#********************************************
# Model 03a: 'item+step+rater'
mod03a <- TAM::tam.mml.mfr( resp, facets=data.cqc03[,"rater",drop=FALSE],
formulaA=~ item+step+rater, pid=data.cqc03$pid )
summary( mod03a )
#--- ConQuest
X <- data.cqc03[,"rater",drop=FALSE]
X$rater <- as.numeric(substring( X$rater, 2 )) # convert 'rater' in numeric format
maxK <- max( resp, na.rm=TRUE)
cmod03a <- sirt::R2conquest( resp, X=X, regression="", model="item+step+rater",
name="mod03a", path.conquest=path.conquest, set.constraints="cases" )
summary(cmod03a) # summary output
# read ConQuest model
res03a <- WrightMap::CQmodel(p.est="mod03a.wle", show="mod03a.shw", p.type="WLE" )
print(res03a)
# Wright map
plot(res03a)
#********************************************
# Model 03b: 'item:step+rater'
mod03b <- TAM::tam.mml.mfr( resp, facets=data.cqc03[,"rater",drop=FALSE],
formulaA=~ item + item:step+rater, pid=data.cqc03$pid )
summary( mod03b )
#********************************************
# Model 03c: 'step+rater' for first item 'crit1'
# Restructuring the data is necessary.
# Define raters as items in the new dataset 'dat1'.
persons <- unique( data.cqc03$pid )
raters <- unique( data.cqc03$rater )
dat1 <- matrix( NA, nrow=length(persons), ncol=length(raters) + 1 )
dat1 <- as.data.frame(dat1)
colnames(dat1) <- c("pid", raters )
dat1$pid <- persons
for (rr in raters){
dat1.rr <- data.cqc03[ data.cqc03$rater==rr, ]
dat1[ match(dat1.rr$pid, persons),rr] <- dat1.rr$crit1
}
## > head(dat1)
## pid R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26
## 1 10001 2 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## 2 10002 NA NA 2 1 NA NA NA NA NA NA NA NA NA NA NA NA
## 3 10003 NA NA 3 2 NA NA NA NA NA NA NA NA NA NA NA NA
## 4 10004 NA NA 2 1 NA NA NA NA NA NA NA NA NA NA NA NA
## 5 10005 NA NA 1 1 NA NA NA NA NA NA NA NA NA NA NA NA
## 6 10006 NA NA 1 1 NA NA NA NA NA NA NA NA NA NA NA NA
# estimate model 03c
mod03c <- TAM::tam.mml( dat1[,-1], pid=dat1$pid )
summary( mod03c )
#############################################################################
# EXAMPLE 04: Faceted Rasch model for rating data data.cqc04
#############################################################################
data(data.cqc04)
resp <- data.cqc04[,4:8]
facets <- data.cqc04[, c("rater", "topic") ]
#********************************************
# Model 04a: 'item*step+rater+topic'
formulaA <- ~ item*step + rater + topic
mod04a <- TAM::tam.mml.mfr( resp, facets=facets,
formulaA=formulaA, pid=data.cqc04$pid )
summary( mod04a )
#********************************************
# Model 04b: 'item*step+rater+topic+item*rater+item*topic'
formulaA <- ~ item*step + rater + topic + item*rater + item*topic
mod04b <- TAM::tam.mml.mfr( resp, facets=facets,
formulaA=formulaA, pid=data.cqc04$pid )
summary( mod04b )
#********************************************
# Model 04c: 'item*step' with fixing rater and topic parameters to zero
formulaA <- ~ item*step + rater + topic
mod04c0 <- TAM::tam.mml.mfr( resp, facets=facets,
formulaA=formulaA, pid=data.cqc04$pid, control=list(maxiter=4) )
summary( mod04c0 )
# fix rater and topic parameter to zero
xsi.est <- mod04c0$xsi
xsi.fixed <- cbind( seq(1,nrow(xsi.est)), xsi.est$xsi )
rownames(xsi.fixed) <- rownames(xsi.est)
xsi.fixed <- xsi.fixed[ c(8:13),]
xsi.fixed[,2] <- 0
## > xsi.fixed
## [,1] [,2]
## raterAM 8 0
## raterBE 9 0
## raterCO 10 0
## topicFami 11 0
## topicScho 12 0
## topicSpor 13 0
mod04c1 <- TAM::tam.mml.mfr( resp, facets=facets,
formulaA=formulaA, pid=data.cqc04$pid, xsi.fixed=xsi.fixed )
summary( mod04c1 )
#############################################################################
# EXAMPLE 05: Partial credit model with latent regression and
# plausible value imputation
#############################################################################
data(data.cqc05)
resp <- data.cqc05[, -c(1:3) ] # select item responses
#********************************************
# Model 05a: Partial credit model
mod05a <-tam.mml(resp=resp, irtmodel="PCM2" )
#********************************************
# Model 05b: Partial credit model with latent regressors
mod05b <-tam.mml(resp=resp, irtmodel="PCM2", Y=data.cqc05[,1:3] )
# Plausible value imputation
pvmod05b <- TAM::tam.pv( mod05b )
# }
Run the code above in your browser using DataLab