Create a DBR classifier to predict multi-label data. This is a simple approach
that enables the binary classifiers to discover existing label dependency by
themselves. The idea of DBR is exactly the same used in BR+ (the training
method is the same, excepted by the argument estimate.models
that
indicate if the estimated models must be created).
dbr(mdata, base.algorithm = getOption("utiml.base.algorithm", "SVM"),
estimate.models = TRUE, ..., cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA))
A mldr dataset used to train the binary models.
A string with the name of the base algorithm. (Default:
options("utiml.base.algorithm", "SVM")
)
Logical value indicating whether is necessary build
Binary Relevance classifier for estimate process. The default implementation
use BR as estimators, however when other classifier is desirable then use
the value FALSE
to skip this process. (Default: TRUE
).
Others arguments passed to the base algorithm for all subproblems.
The number of cores to parallelize the training. Values higher
than 1 require the parallel package. (Default:
options("utiml.cores", 1)
)
An optional integer used to set the seed. This is useful when
the method is run in parallel. (Default: options("utiml.seed", NA)
)
An object of class DBRmodel
containing the set of fitted
models, including:
A vector with the label names.
The BR model to estimate the values for the labels.
Only when the estimate.models = TRUE
.
A list of final models named by the label names.
Montanes, E., Senge, R., Barranquero, J., Ramon Quevedo, J., Jose Del Coz, J., & Hullermeier, E. (2014). Dependent binary relevance models for multi-label classification. Pattern Recognition, 47(3), 1494-1508.
Recursive Dependent Binary Relevance
Other Transformation methods: brplus
,
br
, cc
, clr
,
ctrl
, ebr
, ecc
,
eps
, esl
,
homer
, lift
,
lp
, mbr
, ns
,
ppt
, prudent
,
ps
, rakel
,
rdbr
, rpc
# NOT RUN {
model <- dbr(toyml, "RANDOM")
pred <- predict(model, toyml)
# }
# NOT RUN {
# Use Random Forest as base algorithm and 4 cores
model <- dbr(toyml, 'RF', cores = 4)
# }
Run the code above in your browser using DataLab