50% off: Unlimited data and AI learning.
The Learning Leader's Guide to AI Literacy

BayesianFROC (version 1.0.0)

ddddd: Data of MRMC; Model does converge.

Description

This is a subset of dd. In the past, this model did not converge in the Model_MRMC.stan, thus I made a new stan file to get convergence estimates. The stan file named Model_Hiera_OneModalityMultipleReader_TargetFormulation.stan. Thus, even if the number of modalityt is 1, we can pool the AUCs over all readers by using this new model. The author believes this pooling is the most natural, primitive, simple way.

ddddd$M

1 modality <---- ATTENTION!!

ddddd$C

5 Confidence levels

ddddd$Q

4 readers

Arguments

Details

The model did not converge both null model and alternative model in 2019 Jun 21.

Contents of dddd

NL = 142 (Number of Lesions)

NI = 199 (Number of Images)#'

Contents:

Multiple readers and multiple modalities case, i.e., MRMC case

---------------------------------------------------------------------------------------------------

ModalityID ReaderID Confidence levels No. of false alarms No. of hits.
q m c f h
-------------- ------------- ------------------------ ------------------- ----------------
1 1 5 0 50
1 1 4 4 30
1 1 3 20 11
1 1 2 29 5
1 1 1 21 1
1 2 5 0 15
1 2 4 0 29
1 2 3 6 29
1 2 2 15 1
1 2 1 22 0
1 3 5 1 39
1 3 4 15 31
1 3 3 18 8
1 3 2 31 10
1 3 1 19 3
1 4 5 1 10
1 4 4 2 8
1 4 3 4 25
1 4 2 16 45
1 4 1 17 14

---------------------------------------------------------------------------------------------------

References

Example data of Jafroc software

See Also

dataList.Chakra.Web dataList.Chakra.Web.orderd dd

Examples

Run this code
# NOT RUN {

#========================================================================================
#                        Show data by table
#========================================================================================



                        viewdata(BayesianFROC::ddddd)




####1#### ####2#### ####3#### ####4#### ####5#### ####6#### ####7#### ####8#### ####9####
#========================================================================================
#                       make an object dddd from an object dd
#========================================================================================



           ddd  <-  data.frame(m=dd$m,q=dd$q,c=dd$c,h=dd$h,f=dd$f)

           dddd <-  ddd[ddd$m < 2,]  #  Reduce the dataset ddd, i.e., dd

ddd <- list(
           m=dddd$m,
           q=dddd$q,
           c=dddd$c,
           h=dddd$h,
           f=dddd$f,
           NL=142,
           NI=199, # 2020 April 6
           C=max(dddd$c),
           M=max(dddd$m),
           Q=max(dddd$q)
        )

          ddddd <-ddd







# }

Run the code above in your browser using DataLab