powered by
Density and random generation for Multivariate Normal distributions with mean vector mean, and covariance matrix cov.
mean
cov
ddmvn(dat,n, p, mean, cov) rdmvn( n, p, mean, cov)
An n by p numeric matrix, the dataset
An integer, the number of observations
An integer, the dimension of data
A length of p vector, the mean
A p by p matrix, the covariance
ddmvn gives the density values; rdmvn generates the random numbers
ddmvn
rdmvn
rdemmix,ddmvt,ddmsn, ddmst,rdmvt,rdmsn, rdmst.
rdemmix
ddmvt
ddmsn
ddmst
rdmvt
rdmsn
rdmst
# NOT RUN { n <- 100 p <- 2 mean <- rep(0,p) cov <- diag(p) set.seed(3214) y <- rdmvn( n,p,mean,cov) den <- ddmvn(y,n,p,mean,cov) # }
Run the code above in your browser using DataLab