vector at which the conditional density is evaluated
x
conditioning value of the Gamma distributed variable
mu
expectation of the Gamma distribution
delta
dispersion parameter of the Gamma distribution
lambda
parameter of the zero-truncated Poisson distribution
theta
copula parameter
family
an integer defining the bivariate copula family: 1 = Gauss, 3 = Clayton, 4=Gumbel, 5=Frank
zt
logical. If zt=TRUE, we use a zero-truncated Poisson variable. Otherwise, we use a Poisson variable. Default is TRUE.
Value
vector of length length(y)
Details
For a Gamma distributed variable X and a (zero truncated) Possion variable Y with joint density function $f_{XY}(x,y)$, this function evaluates $$P(Y=y|X=x)=\frac{f_{XY}(x,y)}{f_X(x)}\,.$$ The joint density function is determined by a copula famila family with copula parameter theta.
References
N. Kraemer, E. Brechmann, D. Silvestrini, C. Czado (2013): Total loss estimation using copula-based regression models. Insurance: Mathematics and Economics 53 (3), 829 - 839.