Learn R Programming

drm (version 0.5-8)

depratio: Empirical estimates of the dependence ratios

Description

Calculates the observed values of the adjacent dependence ratios from the data.

Usage

depratio(formula, data, subset, ord = 2, boot.ci = FALSE, n.boot = NULL, ci.width=0.95)

Arguments

formula
the syntax is of form y~cluster(id)+Time(time), where id denotes the cluster indicator, and Time denotes the order along which the adjacent dependence ratios will be calculated.
data
optional data frame containing the variables in the formula
subset
an optional vector specifying a subset of observations from the data
ord
order of the dependence ratios to be calculated. The default is 2
boot.ci
logical argument specifying whether bootstrap confidence intervals will be calculated for the empirical dependence ratio estimates
n.boot
number of bootstrap replicates
ci.width
width of the confidence interval. Default is 0.95

Value

depratio. Generic functions print and plot are also available.An object of class depratio is a list containing at least the following two components:
tau
matrix of the observed dependence ratios
freq
matrix of the frequencies of events for the numerator of the observed dependence ratios

See Also

drm, cluster, Time

Examples

Run this code
## calculate and plot the observed 2nd order dependence ratios
## for the marijuana data:
data(marijuana)
dr.male <- depratio(y~cluster(id)+Time(age), data=marijuana,
                    subset=sex=="male")
dr.male
plot(dr.male)

## confirm that the 1st order Markov assumption is adequate
## for the madras data:
data(madras)

dr2 <- depratio(symptom~cluster(id)+Time(month), data=madras)
dr3 <- depratio(symptom~cluster(id)+Time(month), ord=3, data=madras)
dr <- rbind(dr2$tau[-length(dr2$tau)]*dr2$tau[-1], dr3$tau)

matplot(1:ncol(dr), t(dr))

Run the code above in your browser using DataLab