Learn R Programming

⚠️There's a newer version (4.1.0) of this package.Take me there.

About

An R package for managing and analyzing text, created by Kenneth Benoit. Supported by the European Research Council grant ERC-2011-StG 283794-QUANTESS.

For more details, see https://quanteda.io.

How to Install

The normal way from CRAN, using your R GUI or

install.packages("quanteda") 

Or for the latest development version:

# devtools package required to install quanteda from Github 
devtools::install_github("quanteda/quanteda") 

Because this compiles some C++ and Fortran source code, you will need to have installed the appropriate compilers.

If you are using a Windows platform, this means you will need also to install the Rtools software available from CRAN.

If you are using macOS, you should install the macOS tools, namely the Clang 6.x compiler and the GNU Fortran compiler (as quanteda requires gfortran to build). If you are still getting errors related to gfortran, follow the fixes here.

How to Use

See the quick start guide to learn how to use quanteda.

How to cite

Benoit, Kenneth, Kohei Watanabe, Haiyan Wang, Paul Nulty, Adam Obeng, Stefan Müller, and Akitaka Matsuo. (2018) “quanteda: An R package for the quantitative analysis of textual data”. Journal of Open Source Software. 3(30), 774. https://doi.org/10.21105/joss.00774.

For a BibTeX entry, use the output from citation(package = "quanteda").

Leaving Feedback

If you like quanteda, please consider leaving feedback or a testimonial here.

Contributing

Contributions in the form of feedback, comments, code, and bug reports are most welcome. How to contribute:

Copy Link

Version

Install

install.packages('quanteda')

Monthly Downloads

23,966

Version

2.0.1

License

GPL-3

Maintainer

Last Published

March 18th, 2020

Functions in quanteda (2.0.1)

corpus_subset

Extract a subset of a corpus
as.fcm

Coercion and checking functions for fcm objects
data-internal

Internal data sets
create

Function to assign multiple slots to a S4 object
char_tolower

Convert the case of character objects
cbind.dfm

Combine dfm objects by Rows or Columns
as.list.tokens

Coercion, checking, and combining functions for tokens objects
bootstrap_dfm

Bootstrap a dfm
corpus_reshape

Recast the document units of a corpus
compute_msttr

Compute the Mean Segmental Type-Token Ratio (MSTTR)
attributes<-

Function extending base::attributes()
corpus_segment

Segment texts on a pattern match
convert

Convert quanteda objects to non-quanteda formats
compute_mattr

Compute the Moving-Average Type-Token Ratio (MATTR)
corpus

Construct a corpus object
corpus_trim

Remove sentences based on their token lengths or a pattern match
corpus-class

Base method extensions for corpus objects
data-relocated

Formerly included data objects
compute_lexdiv_stats

Compute lexical diversity from a dfm or tokens
dfm_replace

Replace features in dfm
corpus_sample

Randomly sample documents from a corpus
check_font

Check if font is available on the system
as.yaml

Convert quanteda dictionary objects to the YAML format
data_dfm_lbgexample

dfm from data in Table 1 of Laver, Benoit, and Garry (2003)
dfm

Create a document-feature matrix
data_char_sampletext

A paragraph of text for testing various text-based functions
diag2na

convert same-value pairs to NA in a textstat_proxy object
dfm2lsa

Convert a dfm to an lsa "textmatrix"
dictionary2-class

dictionary class objects and functions
data_char_ukimmig2010

Immigration-related sections of 2010 UK party manifestos
convert-wrappers

Convenience wrappers for dfm convert
head.corpus

Return the first or last part of a corpus
dfm_sample

Randomly sample documents or features from a dfm
dfm_tolower

Convert the case of the features of a dfm and combine
dfm_tfidf

Weight a dfm by tf-idf
docnames

Get or set document names
metadoc

Get or set document-level meta-data
dfm-class

Virtual class "dfm" for a document-feature matrix
head.dfm

Return the first or last part of a dfm
corpus_trimsentences

Remove sentences based on their token lengths or a pattern match
dfm_lookup

Apply a dictionary to a dfm
expand

Simpler and faster version of expand.grid() in base package
escape_regex

Internal function for select_types() to escape regular expressions
dfm_group

Combine documents in a dfm by a grouping variable
dfm_subset

Extract a subset of a dfm
docvars

Get or set document-level variables
flatten_dictionary

Flatten a hierarchical dictionary into a list of character vectors
data_corpus_inaugural

US presidential inaugural address texts
dfm_match

Match the feature set of a dfm to given feature names
pattern2id

Convert regex and glob patterns to type IDs or fixed patterns
dfm-internal

Internal functions for dfm objects
dfm_split_hyphenated_features

Split a dfm's hyphenated features into constituent parts
dfm_sort

Sort a dfm by frequency of one or more margins
fcm

Create a feature co-occurrence matrix
dictionary

Create a dictionary
dfm_select

Select features from a dfm or fcm
fcm_sort

Sort an fcm in alphabetical order of the features
get_docvars

Internal function to extract docvars
fcm-class

Virtual class "fcm" for a feature co-occurrence matrix
docfreq

Compute the (weighted) document frequency of a feature
data_dictionary_LSD2015

Lexicoder Sentiment Dictionary (2015)
format_sparsity

format a sparsity value for printing
tokens_segment

Segment tokens object by patterns
head.textstat_proxy

Return the first or last part of a textstat_proxy object
friendly_class_undefined_message

Print friendly object class not defined message
featfreq

Compute the frequencies of features
nscrabble

Count the Scrabble letter values of text
nsentence

Count the number of sentences
generate_groups

Generate a grouping vector from docvars
groups

Grouping variable(s) for various functions
is_regex

Internal function for select_types() to check if a string is a regular expression
search_index

Internal function for select_types to search the index using fastmatch.
is_indexed

Check if a glob pattern is indexed by index_types
matrix2dfm

Converts a Matrix to a dfm
dfm_compress

Recombine a dfm or fcm by combining identical dimension elements
meta

Get or set object metadata
tokens_replace

Replace tokens in a tokens object
dfm_trim

Trim a dfm using frequency threshold-based feature selection
lowercase_dictionary_values

Internal function to lowercase dictionary values
ndoc

Count the number of documents or features
matrix2fcm

Converts a Matrix to a fcm
get_object_version

Get the package version that created an object
featnames

Get the feature labels from a dfm
meta_system

Internal function to get, set or initialize system metadata
is_glob

Check if patterns contains glob wildcard
keyness

Compute keyness (internal functions)
merge_dictionary_values

Internal function to merge values of duplicated keys
dfm_weight

Weight the feature frequencies in a dfm
object-builders

Object compilers
textplot_network

Plot a network of feature co-occurrences
make_meta

Internal functions to create a list for the meta attribute
pattern

Pattern for feature, token and keyword matching
field_system

Shortcut functions to access or assign metadata
read_dict_functions

Internal functions to import dictionary files
nsyllable

Count syllables in a text
print-quanteda

Print methods for quanteda core objects
spacyr-methods

Extensions for and from spacy_parse objects
reexports

Objects exported from other packages
nest_dictionary

Utility function to generate a nested list
search_glob

Select types without performing slow regex search
phrase

Declare a compound character to be a sequence of separate pattern matches
names-quanteda

Special handling for names of quanteda objects
sparsity

Compute the sparsity of a document-feature matrix
sample_bygroup

Sample a vector by a group
message_error

Return an error message
print.phrases

Print a phrase object
set_fcm_slots<-

Set values to a fcm's S4 slots
ntoken

Count the number of tokens or types
texts

Get or assign corpus texts
textplot_xray

Plot the dispersion of key word(s)
pattern2list

Convert various input as pattern to a vector used in tokens_select, tokens_compound and kwic.
summarize_texts

Summary statistics on a character vector
textstat_select

Select rows of textstat objects by glob, regex or fixed patterns
textstat_simil

Similarity and distance computation between documents or features
textmodels

Models for scaling and classification of textual data
set_dfm_dimnames<-

Internal functions to set dimnames
replace_dictionary_values

Internal function to replace dictionary values
tokens_subset

Extract a subset of a tokens
types

Get word types from a tokens object
remove_empty_keys

Utility function to remove empty keys
textplot_keyness

Plot word keyness
textstat_lexdiv

Calculate lexical diversity
summary_metadata

Functions to add or retrieve corpus summary metadata
serialize_tokens

Function to serialize list-of-character tokens
textstat_proxy-class

textstat_simil/dist classes
textplot_wordcloud

Plot features as a wordcloud
set_dfm_slots<-

Set values to a dfm's S4 slots
tokens_split

Split tokens by a separator pattern
tokens_group

Recombine documents tokens by groups
summary.corpus

Summarize a corpus
textstat_keyness

Calculate keyness statistics
split_values

Internal function for special handling of multi-word dictionary values
kwic

Locate keywords-in-context
tokens_ngrams

Create ngrams and skipgrams from tokens
textstat_frequency

Tabulate feature frequencies
unlist_character

Unlist a list of character vectors safely
wordcloud_comparison

Internal function for textplot_wordcloud
tokenize_internal

quanteda tokenizers
textstat_entropy

Compute entropies of documents or features
tokens_lookup

Apply a dictionary to a tokens object
tokens

Construct a tokens object
quanteda-package

An R package for the quantitative analysis of textual data
tokens_compound

Convert token sequences into compound tokens
tokens_chunk

Segment tokens object by chunks of a given size
quanteda_options

Get or set package options for quanteda
tokens_recompile

recompile a serialized tokens object
tokens_tolower

Convert the case of tokens
tokens_select

Select or remove tokens from a tokens object
list2dictionary

Internal function to convert a list to a dictionary
valuetype

Pattern matching using valuetype
tokens_wordstem

Stem the terms in an object
wordcloud

Internal function for textplot_wordcloud
tokens_tortl

[Experimental] Change direction of words in tokens
topfeatures

Identify the most frequent features in a dfm
%>%

Pipe operator
textstat_collocations

Identify and score multi-word expressions
summary.character

summary.character method to override the network::summary.character()
textstat_proxy

[Experimental] Compute document/feature proximity
textstat_readability

Calculate readability
tokens_sample

Randomly sample documents from a tokens object
unlist_integer

Unlist a list of integer vectors safely
unused_dots

Raise warning of unused dots
as.dictionary

Coercion and checking functions for dictionary objects
View

View methods for quanteda
as.dfm

Coercion and checking functions for dfm objects
as.matrix.dfm

Coerce a dfm to a matrix or data.frame
as.igraph

Convert an fcm to an igraph object
as.network

redefinition of network::as.network()
as.data.frame.dfm

Convert a dfm to a data.frame
as.corpus

coerce a compressed corpus to a standard corpus
as.matrix,textstat_simil_sparse-method

as.matrix method for textstat_simil_sparse