Learn R Programming

This package contains functions useful for analyzing network data for diffusion of innovations applications.

The package was developed as part of the paper Thomas W. Valente, Stephanie R. Dyal, Kar-Hai Chu, Heather Wipfli, Kayo Fujimoto, Diffusion of innovations theory applied to global tobacco control treaty ratification, Social Science & Medicine, Volume 145, November 2015, Pages 89-97, ISSN 0277-9536 (available here)

From the description:

Empirical statistical analysis, visualization and simulation of diffusion and contagion processes on networks. The package implements algorithms for calculating network diffusion statistics such as transmission rate, hazard rates, exposure models, network threshold levels, infectiousness (contagion), and susceptibility. The package is inspired by work published in Valente, et al., (2015); Valente (1995), Myers (2000), Iyengar and others (2011), Burt (1987); among others.

Acknowledgements: netdiffuseR was created with the support of grant R01 CA157577 from the National Cancer Institute/National Institutes of Health.

citation(package="netdiffuseR")
To cite netdiffuseR in publications use the following paper:

  Valente TW, Vega Yon GG. Diffusion/Contagion Processes on Social
  Networks. Health Education & Behavior. 2020;47(2):235-248.
  doi:10.1177/1090198120901497

And the actual R package:

  Vega Yon G, Valente T (2022). _netdiffuseR: Analysis of Diffusion and
  Contagion Processes on Networks_. doi:10.5281/zenodo.1039317
  <https://doi.org/10.5281/zenodo.1039317>, R package version 1.22.4,
  <https://github.com/USCCANA/netdiffuseR>.

To see these entries in BibTeX format, use 'print(<citation>,
bibtex=TRUE)', 'toBibtex(.)', or set
'options(citation.bibtex.max=999)'.

News

Changelog can be view here.

  • [2016-06-02] A video of the netdiffuseR workshop at SUNBELT 2016 is now online on youtube, and the workshop materials can be found here
  • [2016-04-11] netdiffuseR will be on useR! 2016 on as a presentation and on IC2S2 2016 in the posters session.
  • [2016-03-16] Next CRAN release scheduled for April 11th 2016 (after the workshop).
  • [2016-02-18] netdiffuseR vers 1.16.2 is now on CRAN!

Installation

CRAN version

To get the CRAN (stable) version of the package, simple type

install.packages("netdiffuseR")

Bleeding edge version

If you want the latest (unstable) version of netdiffuseR, using the devtools package, you can install netdiffuseR dev version as follows

devtools::install_github('USCCANA/netdiffuseR', build_vignettes = TRUE)

You can skip building vignettes by setting build_vignettes = FALSE (so it is not required).

For the case of OSX users, there seems to be a problem when installing packages depending on Rcpp. This issue, developed here, can be solved by open the terminal and typing the following

curl -O http://r.research.att.com/libs/gfortran-4.8.2-darwin13.tar.bz2
sudo tar fvxz gfortran-4.8.2-darwin13.tar.bz2 -C /

before installing the package through devtools.

Binary versions

For the case of windows and mac users, they can find binary versions of the package here, netdiffuseR_1…zip, and netdiffuseR_1…tgz respectively. They can install this directly as follows (using the 1.16.3.29 version):

  1. Install dependencies from CRAN r > install.packages(c("igraph", "Matrix", "SparseM", "RcppArmadillo", "sna"), dependencies=TRUE)

  2. Download the binary version and install it as follows:

    > install.packages("netdiffuseR_1.16.3.29.zip", repos=NULL)

    For windows users, and for Mac users:

    > install.packages("netdiffuseR_1.16.3.29.tgz", repos=NULL)

Tutorials

Since starting netdiffuseR, we have done a couple of workshops at Sunbelt and NASN. Here are the repositories:

Presentations

Examples

This example has been taken from the package’s vignettes:

library(netdiffuseR)
## 
## Attaching package: 'netdiffuseR'

## The following object is masked from 'package:base':
## 
##     %*%

Infectiousness and Susceptibility

# Generating a random graph
set.seed(1234)
n <- 100
nper <- 20
graph <- rgraph_er(n, nper, .5)
toa <- sample(c(1:(1+nper-1), NA), n, TRUE)
head(toa)
## [1] 16  3 14  3 13  5
# Creating a diffnet object
diffnet <- as_diffnet(graph, toa)
diffnet
## Dynamic network of class -diffnet-
##  Name               : Diffusion Network
##  Behavior           : Unspecified
##  # of nodes         : 100 (1, 2, 3, 4, 5, 6, 7, 8, ...)
##  # of time periods  : 20 (1 - 20)
##  Type               : directed
##  Final prevalence   : 0.95
##  Static attributes  : -
##  Dynamic attributes : -
summary(diffnet)
## Diffusion network summary statistics
## Name     : Diffusion Network
## Behavior : Unspecified
## -----------------------------------------------------------------------------
##  Period   Adopters   Cum Adopt. (%)   Hazard Rate   Density   Moran's I (sd)  
## -------- ---------- ---------------- ------------- --------- ---------------- 
##        1          8         8 (0.08)             -      0.50 -0.01 (0.00)     
##        2          3        11 (0.11)          0.03      0.50 -0.01 (0.00)     
##        3          6        17 (0.17)          0.07      0.51 -0.01 (0.00)     
##        4          3        20 (0.20)          0.04      0.49 -0.01 (0.00)     
##        5          9        29 (0.29)          0.11      0.50 -0.01 (0.00)     
##        6          5        34 (0.34)          0.07      0.50 -0.01 (0.00)     
##        7          2        36 (0.36)          0.03      0.51 -0.01 (0.00)     
##        8          3        39 (0.39)          0.05      0.50 -0.01 (0.00)     
##        9          5        44 (0.44)          0.08      0.50 -0.01 (0.00)     
##       10          1        45 (0.45)          0.02      0.49 -0.01 (0.00)     
##       11          3        48 (0.48)          0.05      0.50 -0.01 (0.00)     
##       12          6        54 (0.54)          0.12      0.50 -0.01 (0.00)     
##       13          8        62 (0.62)          0.17      0.50 -0.01 (0.00)     
##       14          9        71 (0.71)          0.24      0.50 -0.01 (0.00)     
##       15          5        76 (0.76)          0.17      0.50 -0.00 (0.00) **  
##       16          7        83 (0.83)          0.29      0.50 -0.01 (0.00)     
##       17          5        88 (0.88)          0.29      0.49 -0.00 (0.00) *** 
##       18          4        92 (0.92)          0.33      0.50 -0.01 (0.00)     
##       19          1        93 (0.93)          0.12      0.50 -0.01 (0.00)     
##       20          2        95 (0.95)          0.29      0.50 -0.01 (0.00)     
## -----------------------------------------------------------------------------
##  Left censoring  : 0.08 (8)
##  Right centoring : 0.05 (5)
##  # of nodes      : 100
## 
##  Moran's I was computed on contemporaneous autocorrelation using 1/geodesic
##  values. Significane levels  *** <= .01, ** <= .05, * <= .1.
# Visualizing distribution of suscep/infect
out <- plot_infectsuscep(diffnet, bins = 20,K=5, logscale = FALSE, h=.01)

out <- plot_infectsuscep(diffnet, bins = 20,K=5, logscale = TRUE,
                         exclude.zeros = TRUE, h=1)
## Warning in plot_infectsuscep.list(graph$graph, graph$toa, t0, normalize, : When
## applying logscale some observations are missing.

Threshold

# Generating a random graph
set.seed(123)
diffnet <- rdiffnet(500, 20,
                    seed.nodes = "random",
                    rgraph.args = list(m=3),
                    threshold.dist = function(x) runif(1, .3, .7))
## Warning in (function (graph, p, algorithm = "endpoints", both.ends = FALSE, :
## The option -copy.first- is set to TRUE. In this case, the first graph will be
## treated as a baseline, and thus, networks after T=1 will be replaced with T-1.
diffnet
## Dynamic network of class -diffnet-
##  Name               : A diffusion network
##  Behavior           : Random contagion
##  # of nodes         : 500 (1, 2, 3, 4, 5, 6, 7, 8, ...)
##  # of time periods  : 20 (1 - 20)
##  Type               : directed
##  Final prevalence   : 1.00
##  Static attributes  : real_threshold (1)
##  Dynamic attributes : -
# Threshold with fixed vertex size
plot_threshold(diffnet)

Using more features

data("medInnovationsDiffNet")
set.seed(131)
plot_threshold(
  medInnovationsDiffNet,
  vertex.color     = viridisLite::inferno(4)[medInnovationsDiffNet[["city"]]],
  vertex.sides     = medInnovationsDiffNet[["city"]] + 2,
  sub = "Note: Vertices' sizes and shapes given by degree and city respectively",
  jitter.factor = c(1,1), jitter.amount = c(.25,.025)
)
## Warning in (function (graph, expo, toa, include_censored = FALSE, t0 =
## min(toa, : -vertex.sides- will be coerced to integer.

Adoption rate

plot_adopters(diffnet)

Hazard rate

hazard_rate(diffnet)

Diffusion process

plot_diffnet(medInnovationsDiffNet, slices=c(1,9,8))

diffnet.toa(brfarmersDiffNet)[brfarmersDiffNet$toa >= 1965] <- NA
plot_diffnet2(brfarmersDiffNet, vertex.size = "indegree")

set.seed(1231)

# Random scale-free diffusion network
x <- rdiffnet(1000, 4, seed.graph="scale-free", seed.p.adopt = .025,
                           rewire = FALSE, seed.nodes = "central",
                           rgraph.arg=list(self=FALSE, m=4),
                           threshold.dist = function(id) runif(1,.2,.4))

# Diffusion map (no random toa)
dm0 <- diffusionMap(x, kde2d.args=list(n=150, h=1), layout=igraph::layout_with_fr)

# Random
diffnet.toa(x) <- sample(x$toa, size = nnodes(x))

# Diffusion map (random toa)
dm1 <- diffusionMap(x, layout = dm0$coords, kde2d.args=list(n=150, h=.5))

oldpar <- par(no.readonly = TRUE)
col <- viridisLite::plasma(100)
par(mfrow=c(1,2), oma=c(1,0,0,0), cex=.8)
image(dm0, col=col, main="Non-random Times of Adoption\nAdoption from the core.")
image(dm1, col=col, main="Random Times of Adoption")
par(mfrow=c(1,1))
mtext("Both networks have the same distribution on times of adoption", 1,
      outer = TRUE)

par(oldpar)

Adopters classification

out <- classify(kfamilyDiffNet, include_censored = TRUE)
ftable(out)
##                thr Non-Adopters Very Low Thresh. Low Thresh. High Thresh. Very High Thresh.
## toa                                                                                        
## Non-Adopters               0.00             0.00        0.00         0.00              0.00
## Early Adopters             0.00            14.04        8.40         0.57              0.29
## Early Majority             0.00             5.64       11.65         5.54              2.58
## Late Majority              0.00             1.34        5.06         6.21              2.96
## Laggards                   0.00             1.53        0.00         0.00             34.19
# Plotting 
oldpar <- par(no.readonly = TRUE)
par(xpd=TRUE)
plot(out, color=viridisLite::inferno(5), las = 2, xlab="Time of Adoption",
     ylab="Threshold", main="")

# Adding key
legend("bottom", legend = levels(out$thr), fill=viridisLite::inferno(5), horiz = TRUE,
       cex=.6, bty="n", inset=c(0,-.1))

par(oldpar)

Session info

sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices datasets  utils     methods   base     
## 
## other attached packages:
## [1] netdiffuseR_1.22.4
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.9            sna_2.6               highr_0.9            
##  [4] compiler_4.2.1        pillar_1.8.1          tools_4.2.1          
##  [7] boot_1.3-28           digest_0.6.29         MatchIt_4.4.0        
## [10] evaluate_0.16         tibble_3.1.8          lifecycle_1.0.2      
## [13] lattice_0.20-45       viridisLite_0.4.0     pkgconfig_2.0.3      
## [16] rlang_1.0.5           Matrix_1.5-0          igraph_1.3.2         
## [19] cli_3.4.0             rstudioapi_0.14       yaml_2.3.5           
## [22] SparseM_1.81          xfun_0.32             fastmap_1.1.0        
## [25] coda_0.19-4           stringr_1.4.1         knitr_1.40           
## [28] vctrs_0.4.1           networkDynamic_0.11.1 grid_4.2.1           
## [31] glue_1.6.2            fansi_1.0.3           bspm_0.3.9           
## [34] rmarkdown_2.16        magrittr_2.0.3        backports_1.4.1      
## [37] htmltools_0.5.3       MASS_7.3-58.1         utf8_1.2.2           
## [40] stringi_1.7.8         network_1.17.2        statnet.common_4.7.0

To-do list

  • Import/Export functions for interfacing other package’s clases, in particular: statnet set (specially the packages networkDynamic and ndtv), igraph and Rsiena.
  • Populate the tests folder.
  • Use spells? (select_egoalter would use this)
  • Classify individuals by adoption category using early adopters, adopters, and laggards, and by threshold using very low, low, high and very high threshold (Valente 95’ p. 94).
  • Double check all functions using adjacency matrix values.
  • Remove dimnames from matrices and vectors. It is more efficient to use the ones stored in meta instead.
  • Implement the Bass model
  • Include function to import survey data (as shown on the vignettes)
  • Exposure based on Mahalanobis distances and also Roger Leenders on weighting exposure (internal note).
  • (2016-03-30): use xspline for drawing polygons & edges.
  • (2016-04-04): Add more options to exposure, namely, self (so removes diagonal or not!).
  • (2016-04-19): animal behaviorists.
  • (2016-10-18): Review language throughout the manual (more than innovation).
  • (2016-10-18): Evaluate and eventually use a standard graph format (network for instance?).
  • (2016-10-18): Standarize graph plot methods (choose either statnet/igraph/own)

Copy Link

Version

Install

install.packages('netdiffuseR')

Monthly Downloads

662

Version

1.22.6

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

August 30th, 2023

Functions in netdiffuseR (1.22.6)

fakeEdgelist

Fake static edgelist
fakesurvey

Fake survey data
fakeDynEdgelist

Fake dynamic edgelist
ego_variance

Computes variance of \(Y\) at ego level
egonet_attrs

Retrieve alter's attributes (network effects)
diffusionMap

Creates a heatmap based on a graph layout and a vertex attribute
matrix_compare

Non-zero element-wise comparison between two sparse matrices
fakesurveyDyn

Fake longitudinal survey data
medInnovations

Medical Innovation
igraph

Coercion between graph classes
kfamilyDiffNet

diffnet version of the Korean Family Planning data
kfamily

Korean Family Planning
moran

Computes Moran's I correlation index
edgelist_to_adjmat

Conversion between adjacency matrix and edgelist
dgr

Indegree, outdegree and degree of the vertices
isolated

Find and remove isolated vertices
network

Coercion between diffnet, network and networkDynamic
permute_graph

Permute the values of a matrix
nvertices

Count the number of vertices/edges/slices in a graph
netdiffuseR-graphs

Network data formats
medInnovationsDiffNet

diffnet version of the Medical Innovation data
drawColorKey

Draw a color key in the current device
hazard_rate

Network Hazard Rate
exposure

Ego exposure
edges_coords

Compute ego/alter edge coordinates considering alter's size and aspect ratio
grid_distribution

Distribution over a grid
infection

Susceptibility and Infection
netmatch

Matching Estimators with Network Data
mentor_matching

Optimal Leader/Mentor Matching
netdiffuseR

netdiffuseR
netdiffuseR-options

netdiffuseR default options
plot_diffnet2

Another way of visualizing diffusion
plot.diffnet

S3 plotting method for diffnet objects.
plot_diffnet

Plot the diffusion process
plot_adopters

Visualize adopters and cumulative adopters
rdiffnet

Random diffnet network
read_pajek

Read foreign graph formats
read_ucinet_head

Reads UCINET files
pretty_within

Pretty numbers within a range.
plot_infectsuscep

Plot distribution of infect/suscep
plot_threshold

Threshold levels through time
recode

Recodes an edgelist such that ids go from 1 to n
round_to_seq

Takes a numeric vector and maps it into a finite length sequence
select_egoalter

Calculate the number of adoption changes between ego and alter.
ring_lattice

Ring lattice graph
rewire_graph

Graph rewiring algorithms
rgraph_er

Erdos-Renyi model
rgraph_ba

Scale-free and Homophilic Random Networks
rgraph_ws

Watts-Strogatz model
rescale_vertex_igraph

struct_equiv

Structural Equivalence
threshold

Retrive threshold levels from the exposure matrix
survey_to_diffnet

Convert survey-like data and edgelists to a diffnet object
vertex_covariate_compare

Comparisons at dyadic level
struct_test

Structure dependence test
summary.diffnet

Summary of diffnet objects
weighted_var

Computes weighted variance
vertex_covariate_dist

Computes covariate distance between connected vertices
transformGraphBy

Apply a function to a graph considering non-diagonal structural zeros
toa_mat

Time of adoption matrix
toa_diff

Difference in Time of Adoption (TOA) between individuals
diffnet-arithmetic

diffnet Arithmetic and Logical Operators
approx_geodesic

Approximate Geodesic Distances
classify_graph

Analyze an R object to identify the class of graph (if any)
as.array.diffnet

Coerce a diffnet graph into an array
diffnet-class

Creates a diffnet class object
diffnet_check_attr_class

Infer whether value is dynamic or static.
diffreg

Diffusion regression model
classify_adopters

Classify adopters accordingly to Time of Adoption and Threshold levels.
diag_expand

Creates a square matrix suitable for spatial statistics models.
cumulative_adopt_count

Cummulative count of adopters
bootnet

Network Bootstrapping
diffusion-data

Diffusion Network Datasets
bass

Bass Model
as_dgCMatrix

Coerce a matrix-like objects to dgCMatrix (sparse matrix)
brfarmers

Brazilian Farmers
c.diffnet

Combine diffnet objects
diffnet_index

Indexing diffnet objects (on development)
brfarmersDiffNet

diffnet version of the Brazilian Farmers data
%*%

Matrix multiplication