Learn R Programming

Robust linear mixed effects models

The R-package robustlmm provides functions for estimating linear mixed effects models in a robust way.

The main workhorse is the function rlmer; it is implemented as direct robust analogue of the popular lmer function of the lme4 package. The two functions have similar abilities and limitations. A wide range of data structures can be modeled: mixed effects models with hierarchical as well as complete or partially crossed random effects structures are possible. While the lmer function is optimized to handle large datasets efficiently, the computations employed in the rlmer function are more complex and for this reason also more expensive to compute. The two functions have the same limitations in the support of different random effect and residual error covariance structures. Both support only diagonal and unstructured random effect covariance structures.

The robustlmm package implements most of the analysis tool chain as is customary in R. The usual functions such as summary, coef, resid, etc. are provided as long as they are applicable for this type of models (see rlmerMod-class for a full list). The functions are designed to be as similar as possible to the ones in the lme4 package to make switching between the two packages easy.

Installation

This R-package is available on CRAN. Install it directly in R with the command

install.packages("robustlmm")

This package requires lme4 version at least 1.1 and other packages. Make sure to install them as well.

You can also install the package directly from github:

install.packages("devtools") ## if not already installed
require(devtools)
install_github("kollerma/robustlmm")
require(robustlmm)

Copy Link

Version

Install

install.packages('robustlmm')

Monthly Downloads

4,034

Version

3.3-1

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Manuel Koller

Last Published

December 14th, 2023

Functions in robustlmm (3.3-1)

mergeProcessedFits

Merge Processed Fits
plot-methods

Plot an Object of the "Psi Function" Class
generateSensitivityCurveDatasets

Generate Datasets To Create Sensitivity Curves
processFit

Process Fitted Objects
psi2propII

Convert to Proposal 2 weight function
residuals.rlmerMod

Get residuals
psi-functions

Classical, Huber and smoothed Huber psi- or rho-functions
saveDatasets

Save datasets
robustlmm-package

Robust linear mixed effects models
splitDatasets

Split Datasets Into Chunks
shortenLabelsKS2022

Shorten Labels
rlmer

Robust Scoring Equations Estimator for Linear Mixed Models
viewCopyOfSimulationStudy

Access Simulation Study Code
rlmerMod-class

rlmerMod Class
processFile

Process File of Stored Datasets
processDatasetsInParallel

Process Datasets in Parallel
chgDefaults

Change default arguments
asymptoticVariance

Compute Asymptotic Efficiencies
fitDatasets_lmer

Fitting Functions
extractTuningParameter

Extract Tuning Parameters Used In Fitting
createDatasetsFromList

Create Dataset List From List of Data Objects
generateAnovaDatasets

Generate ANOVA type datasets
bindDatasets

Bind Generated Datasets
createRhoFunction

Create Rho-Functions With Custom Tuning Parameter
generateMixedEffectDatasets

Generate Mixed Effects Datasets
partialMoment_standardNormal

Compute Partial Moments
lapplyDatasets

Lapply for generated datasets
loadAndMergePartialResults

Load And Merge Partial Results
prepareMixedEffectDataset

Prepare Dataset for Parametric Bootstrap
getME

Extract or Get Generalize Components from a Fitted Mixed Effects Model
plot.rlmerMod

Plot Method for "rlmerMod" objects.
compare

Create comparison charts for multiple fits
other

Other methods