dgirt
and dgmrp
make calls to stan
with
the Stan code and data for their respective models.
dgirt(shaped_data, ..., separate_t = FALSE, delta_tbar_prior_mean = 0.65,
delta_tbar_prior_sd = 0.25, innov_sd_delta_scale = 2.5,
innov_sd_theta_scale = 2.5, version = "2017_01_04",
hierarchical_model = TRUE, model = NULL)dgmrp(shaped_data, ..., separate_t = FALSE, delta_tbar_prior_mean = 0.65,
delta_tbar_prior_sd = 0.25, innov_sd_delta_scale = 2.5,
innov_sd_theta_scale = 2.5, version = "2017_01_04_singleissue",
model = NULL)
Output from shape
.
Further arguments, passed to stan
.
Whether smoothing of estimates over time should be
disabled. Default FALSE
.
Prior mean for delta_tbar
, the normal
weight on theta_bar
in the previous period. Default 0.65
.
Prior standard deviation for delta_bar
.
Default 0.25
.
Prior scale for sd_innov_delta
, the Cauchy
innovation standard deviation of nu_geo
and delta_gamma
.
Default 2.5
.
Prior scale for sd_innov_theta
, the Cauchy
innovation standard deviation of gamma
, xi
, and if
constant_item
is FALSE
the item difficulty diff
. Default
2.5
.
The name of the dgo model to estimate, or the path to a
.stan
file. Valid names for dgo models are "2017_01_04",
"2017_01_04_singleissue". Ignored if argument model
is used.
Whether a hierarchical model should be used to
smooth the group IRT estimates. If set to FALSE, the model will return raw
group-IRT model estimates for each group. Default TRUE
.
A Stan model object of class stanmodel
to be used in
estimation. Specifying this argument avoids repeated model compilation. Note
that the Stan model object for a model fitted with dgirt()
or
dgmrp()
can be found in the the stanmodel
slot of the resulting
dgirt_fit
or dgmrp_fit
object.
A dgo_fit-class
object that extends
stanfit-class
.
The user will typically pass further arguments to stan
via the ...
argument, at a minimum iter
and cores
.
By default dgirt
and dgmrp
override the
stan
default for its pars
argument to specify
typical parameters of interest. They also set iter_r
to 1L
.
Important: the dgirt
model assumes consistent coding of the polarity
of item responses for identification.