dgompertz(x, shape, rate = 1, log = FALSE)
pgompertz(q, shape, rate = 1, lower.tail = TRUE, log.p = FALSE)
qgompertz(p, shape, rate = 1, lower.tail = TRUE, log.p = FALSE)
rgompertz(n, shape, rate = 1)
hgompertz(x, shape, rate = 1, log=FALSE)
Hgompertz(x, shape, rate = 1, log=FALSE)
length(n) > 1
, the length
is taken to be the number required.dgompertz
gives the density,
pgompertz
gives the distribution function,
qgompertz
gives the quantile function,
hgompertz
gives the hazard function,
Hgompertz
gives the cumulative hazard function, and
rgompertz
generates random deviates.
shape
parameter $a$ and
rate
parameter $b$ has probability density function
$$f(x | a, b) = be^{ax}\exp(-b/a (e^{ax} - 1))$$and hazard
$$h(x | a, b) = b e^{ax}$$
The hazard is increasing for shape $a>0$ and decreasing for $a<0$. for="" $a="0$" the="" gompertz="" is="" equivalent="" to="" exponential="" distribution="" with="" constant="" hazard="" and="" rate="" $b$.="" <="" p="">
The probability distribution function is $$F(x | a, b) = 1 - \exp(-b/a (e^{ax} - 1))$$
Thus if $a$ is negative, letting $x$ tend to infinity
shows that there is a non-zero
probability $1 - exp(b/a)$ of living forever.
On these occasions qgompertz
and rgompertz
will return
Inf
.
dexp