data(iris)
x <- iris[,4]
hist(x, breaks=20, main="Data")
def.par <- par(no.readonly = TRUE) # save default
layout(mat=rbind(1:2,3:4))
### convert continuous variables into categories (there are 3 types of flowers)
### default is equal interval width
table(discretize(x, categories=3))
hist(x, breaks=20, main="Equal Interval length")
abline(v=discretize(x, categories=3, onlycuts=TRUE),
col="red")
### equal frequency
table(discretize(x, "frequency", categories=3))
hist(x, breaks=20, main="Equal Frequency")
abline(v=discretize(x, method="frequency", categories=3, onlycuts=TRUE),
col="red")
### k-means clustering
table(discretize(x, "cluster", categories=3))
hist(x, breaks=20, main="K-Means")
abline(v=discretize(x, method="cluster", categories=3, onlycuts=TRUE),
col="red")
### user-specified
table(discretize(x, "fixed", categories = c(-Inf,.8,Inf)))
table(discretize(x, "fixed", categories = c(-Inf,.8, Inf),
labels=c("small", "large")))
hist(x, breaks=20, main="Fixed")
abline(v=discretize(x, method="fixed", categories = c(-Inf,.8,Inf),
onlycuts=TRUE), col="red")
par(def.par) # reset to default
### prepare the iris data set for association rule mining
for(i in 1:4) iris[,i] <- discretize(iris[,i], "frequency", categories=3)
trans <- as(iris, "transactions")
inspect(head(trans, 1))
as(head(trans, 3),"matrix")
Run the code above in your browser using DataLab