# NOT RUN {
data(iris)
x <- iris[,1]
### look at the distribution before discretizing
hist(x, breaks = 20, main = "Data")
def.par <- par(no.readonly = TRUE) # save default
layout(mat = rbind(1:2,3:4))
### convert continuous variables into categories (there are 3 types of flowers)
### the default method is equal frequency
table(discretize(x, breaks = 3))
hist(x, breaks = 20, main = "Equal Frequency")
abline(v = discretize(x, breaks = 3,
onlycuts = TRUE), col = "red")
# Note: the frequencies are not exactly equal because of ties in the data
### equal interval width
table(discretize(x, method = "interval", breaks = 3))
hist(x, breaks = 20, main = "Equal Interval length")
abline(v = discretize(x, method = "interval", breaks = 3,
onlycuts = TRUE), col = "red")
### k-means clustering
table(discretize(x, method = "cluster", breaks = 3))
hist(x, breaks = 20, main = "K-Means")
abline(v = discretize(x, method = "cluster", breaks = 3,
onlycuts = TRUE), col = "red")
### user-specified (with labels)
table(discretize(x, method = "fixed", breaks = c(-Inf, 6, Inf),
labels = c("small", "large")))
hist(x, breaks = 20, main = "Fixed")
abline(v = discretize(x, method = "fixed", breaks = c(-Inf, 6, Inf),
onlycuts = TRUE), col = "red")
par(def.par) # reset to default
### prepare the iris data set for association rule mining
### use default discretization
irisDisc <- discretizeDF(iris)
head(irisDisc)
### specify discretization for the petal columns
irisDisc <- discretizeDF(iris, methods = list(
Petal.Length = list(method = "frequency", breaks = 3,
labels = c("short", "medium", "long")),
Petal.Width = list(method = "frequency", breaks = 2,
labels = c("narrow", "wide"))
))
head(irisDisc)
### discretize new data using the same discretization scheme as the
### data.frame supplied in methods. Note: NAs may occure if a new
### value falls outside the range of values observed in the
### originally discretized table (use argument infinity = TRUE in
### discretize to prevent this case.)
discretizeDF(iris[sample(1:nrow(iris), 5),], methods = irisDisc)
# }
Run the code above in your browser using DataLab