Learn R Programming

sn (version 0.4-4)

dmst: Multivariate skew-t distribution

Description

Probability density function, distribution function and random number generation for the multivariate skew-t (MST) distribution.

Usage

dmst(x, xi=rep(0,length(alpha)), Omega, alpha, df=Inf, log=FALSE)
dmst(x, dp=, log=FALSE)
pmst(x, xi=rep(0,length(alpha)), Omega, alpha, df=Inf, ...)
pmst(x, dp=, ...)
rmst(n=1, xi=rep(0,length(alpha)), Omega, alpha, df=Inf)
rmst(n=1, dp=)

Arguments

x
for dmsn, this is either a vector of length d, where d=length(alpha), or a matrix with d columns, giving the coordinates of the point(s) where the density must be avaluated; for pmsn, onl
xi
a numeric vector of lenght d, or a matrix with d columns, representing the location parameter of the distribution. If xi is a matrix, its dimensions must agree with those of x.
Omega
a positive-definite covariance matrix of dimension (d,d).
alpha
a numeric vector which regulates the shape of the density.
df
degrees of freedom (scalar); default is df=Inf which corresponds to the multivariate skew-normal distribution.
dp
a list with three elements named xi, Omega, alpha and df, containing quantities as described above. If dp is specified, this overrides the individual parameter specification.
n
a numeric value which represents the number of random vectors to be drawn.
log
logical; if TRUE, densities are given as log-densities.
...
additional parameters passed to pmt

Value

  • A vector of density values (dmst) or a single probability (pmst) or a matrix of random points (rmst).

synopsis

dmst(x, xi=rep(0,length(alpha)), Omega, alpha, df=Inf, dp = NULL, log=FALSE) pmst(x, xi=rep(0,length(alpha)), Omega, alpha, df=Inf, dp = NULL, ...) rmst(n=1, xi=rep(0,length(alpha)), Omega, alpha, df=Inf, dp = NULL)

Background

The family of multivariate skew-t distributions is an extension of the multivariate Student's t family, via the introduction of a shape parameter which regulates skewness; when shape=0, the skew-t distribution reduces to the usual t distribution. When df=Inf the distribution reduces to the multivariate skew-normal one; see dmsn. See the reference below for additional information.

Details

The positive-definiteness of Omega is not tested for efficiency reasons. Function pmst requires pmt from package mnormt; the accuracy of its computation can be controlled via use of ...

References

Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. J.Roy. Statist. Soc. B 65, 367--389.

See Also

dst, dmsn, dmt

Examples

Run this code
x <- seq(-4,4,length=15)
xi <- c(0.5, -1)
Omega <- diag(2)
Omega[2,1] <- Omega[1,2] <- 0.5
alpha <- c(2,2)
pdf <- dmst(cbind(x,2*x-1), xi, Omega, alpha, df=5)
rnd <- rmst(10,  xi, Omega, alpha, 6)
p1 <- pmst(c(2,1), xi, Omega, alpha, df=5)
p2 <- pmst(c(2,1), xi, Omega, alpha, df=5, abseps=1e-12, maxpts=10000)

Run the code above in your browser using DataLab