Learn R Programming

STAR (version 0.3-7)

drexp: The Refractory Exponential Distribution

Description

Density, distribution function, quantile function, and random generation for the refractory exponential.

Usage

drexp(x, rate = 10, rp = 0.005, log = FALSE) prexp(q, rate = 10, rp = 0.005, lower.tail = TRUE, log.p = FALSE) qrexp(p, rate = 10, rp = 0.005, lower.tail = TRUE, log.p = FALSE) rrexp(n, rate = 10, rp = 0.005)

Arguments

x, q
vector of quantiles.
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken to be the number required.
lower.tail
logical; if TRUE (default), probabilities are P[X <= x]<="" code="">, otherwise, P[X > x].
log, log.p
logical; if TRUE, probabilities p are given as log(p).
rate
rate parameter (non-negative numeric).
rp
refractory period parameter (non-negative numeric).

Value

drexp gives the density, prexp gives the distribution function, qrexp gives the quantile function and rrexp generates random deviates.

Details

The refractory exponential distribution with rate, r, and refractory period, rp, has density:

f(x) = r exp(- r (x-rp))

for x >= rp.

References

Johnson, D. H. and Swami, A. (1983) The transmission of signals by auditory-nerve fiber discharge patterns. J. Acoust. Soc. Am. 74: 493--501.

See Also

rexpMLE

Examples

Run this code
## Not run: 
# tSeq <- seq(0.001,0.6,0.001)
# rate.true <- 20
# rp.true <- 0.01
# Yd <- drexp(tSeq, rate.true, rp.true)
# Yh <- hrexp(tSeq, rate.true, rp.true)
# max.Yd <- max(Yd)
# max.Yh <- max(Yh)
# Yd <- Yd / max.Yd
# Yh <- Yh / max.Yh
# oldpar <- par(mar=c(5,4,4,4))
# plot(tSeq, Yd, type="n", axes=FALSE, ann=FALSE,
#      xlim=c(0,0.6), ylim=c(0,1))
# axis(2,at=seq(0,1,0.2),labels=round(seq(0,1,0.2)*max.Yd,digits=2))
# mtext("Density (1/s)", side=2, line=3)
# axis(1,at=pretty(c(0,0.6)))
# mtext("Time (s)", side=1, line=3)
# axis(4, at=seq(0,1,0.2), labels=round(seq(0,1,0.2)*max.Yh,digits=2))
# mtext("Hazard (1/s)", side=4, line=3, col=2)
# mtext("Refractory Exponential Density and Hazard Functions", side=3, line=2,cex=1.5)
# lines(tSeq,Yd)
# lines(tSeq,Yh,col=2)
# par(oldpar)
# ## End(Not run)

Run the code above in your browser using DataLab