# NOT RUN {
data(ecospat.testNiche)
data(ecospat.testData)
spp <- ecospat.testNiche
clim <- ecospat.testData[2:8]
occ.sp_test <- na.exclude(ecospat.sample.envar(
dfsp = spp, colspxy = 2:3, colspkept = 1:3, dfvar = clim,
colvarxy = 1:2, colvar = "all", resolution = 25
))
occ.sp <- cbind(occ.sp_test, spp[, 4]) # add species names
# list of species
sp.list <- levels(occ.sp[, 1])
sp.nbocc <- c()
for (i in 1:length(sp.list)) {
sp.nbocc <- c(sp.nbocc, length(which(occ.sp[, 1] == sp.list[i])))
}
# calculate the nb of occurences per species
sp.list <- sp.list[sp.nbocc > 4] # remove species with less than 5 occurences
nb.sp <- length(sp.list) # nb of species
ls()
# selection of variables to include in the analyses
# try with all and then try only worldclim Variables
Xvar <- c(3:7)
nvar <- length(Xvar)
# number of interation for the tests of equivalency and similarity
iterations <- 100
# resolution of the gridding of the climate space
R <- 100
#################################### PCA-ENVIRONMENT ##################################
data <- rbind(occ.sp[, Xvar + 1], clim[, Xvar])
w <- c(rep(0, nrow(occ.sp)), rep(1, nrow(clim)))
pca.cal <- dudi.pca(data, row.w = w, center = TRUE, scale = TRUE, scannf = FALSE, nf = 2)
####### selection of species ######
sp.list
sp.combn <- combn(1:2, 2)
for (i in 1:ncol(sp.combn)) {
row.sp1 <- which(occ.sp[, 1] == sp.list[sp.combn[1, i]]) # rows in data corresponding to sp1
row.sp2 <- which(occ.sp[, 1] == sp.list[sp.combn[2, i]]) # rows in data corresponding to sp2
name.sp1 <- sp.list[sp.combn[1, i]]
name.sp2 <- sp.list[sp.combn[2, i]]
# predict the scores on the axes
scores.clim <- pca.cal$li[(nrow(occ.sp) + 1):nrow(data), ] # scores for global climate
scores.sp1 <- pca.cal$li[row.sp1, ] # scores for sp1
scores.sp2 <- pca.cal$li[row.sp2, ] # scores for sp2
}
# calculation of occurence density and test of niche equivalency and similarity
# with the default kernel method
z1 <- ecospat.grid.clim.dyn(scores.clim, scores.clim, scores.sp1, R = 100)
z2 <- ecospat.grid.clim.dyn(scores.clim, scores.clim, scores.sp2, R = 100)
# calculation of occurence density and test of niche equivalency and similarity
# with the ks kernel method
z1.kde <- ecospat.grid.clim.dyn(scores.clim, scores.clim, scores.sp1, R = 100, kernel.method = "ks")
z2.kde <- ecospat.grid.clim.dyn(scores.clim, scores.clim, scores.sp2, R = 100, kernel.method = "ks")
par(mfrow = c(2, 2))
plot(z1$z.uncor, main = "Sp1 with default kernel")
plot(z1.kde$z.uncor, main = "Sp1 with KS kernel")
plot(z2$z.uncor, main = "Sp2 with default kernel")
plot(z2.kde$z.uncor, main = "Sp2 with KS kernel")
z1.ext <- ecospat.grid.clim.dyn(scores.clim, scores.clim, scores.sp1, R = 100,
extend.extent = c(0,1,0,0))
par(mfrow = c(1, 2))
plot(z1$z.uncor, main = "Sp1 with default extent")
plot(z1.ext$z.uncor, main = "Sp1 with extended extent")
# }
Run the code above in your browser using DataLab