# Generate an observation from a hypergeometric distribution with
# parameters m=10, n=30, and k=5, then estimate the parameter m.
# Note: the call to set.seed simply allows you to reproduce this example.
# Also, the only parameter actually estimated is m; once m is estimated,
# n is computed by subtracting the estimated value of m (8 in this example)
# from the given of value of m+n (40 in this example). The parameters
# n and k are shown in the output in order to provide information on
# all of the parameters associated with the hypergeometric distribution.
set.seed(250)
dat <- rhyper(nn = 1, m = 10, n = 30, k = 5)
dat
#[1] 1
ehyper(dat, total = 40, k = 5)
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Hypergeometric
#
#Estimated Parameter(s): m = 8
# n = 32
# k = 5
#
#Estimation Method: mle for 'm'
#
#Data: dat
#
#Sample Size: 1
#----------
# Use the same data as in the previous example, but estimate m+n instead.
# Note: The only parameter estimated is m+n. Once this is estimated,
# n is computed by subtracting the given value of m (10 in this case)
# from the estimated value of m+n (50 in this example).
ehyper(dat, m = 10, k = 5)
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Hypergeometric
#
#Estimated Parameter(s): m = 10
# n = 40
# k = 5
#
#Estimation Method: mle for 'm+n'
#
#Data: dat
#
#Sample Size: 1
#----------
# Clean up
#---------
rm(dat)
Run the code above in your browser using DataLab